Mass Inflation without Cauchy Horizons
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10495413" target="_blank" >RIV/00216208:11320/24:10495413 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pKvY5R4.7I" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pKvY5R4.7I</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevLett.133.181402" target="_blank" >10.1103/PhysRevLett.133.181402</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mass Inflation without Cauchy Horizons
Popis výsledku v původním jazyce
Mass inflation is a well established instability, conventionally associated to Cauchy horizons (which are also inner trapping horizons) of stationary geometries, leading to a divergent exponential buildup of energy. We show here that finite (but often large) exponential buildups of energy are present for dynamical geometries describing accreting black holes with slowly evolving inner trapping horizons, even in the absence of Cauchy horizons. The explicit evaluation of the adiabatic conditions behind these exponential buildups shows that this phenomenon is universally present for physically reasonable accreting conditions. This noneternal mass inflation does not require the introduction of global spacetime concepts. We also show that various known results in the literature are recovered in the limit in which the inner trapping horizon asymptotically approaches a Cauchy horizon. Our results imply that black hole geometries with nonextremal inner horizons, including the Kerr geometry in general relativity, and nonextremal regular black holes in theories beyond general relativity, can describe dynamical transients but not the long-lived end point of gravitational collapse.
Název v anglickém jazyce
Mass Inflation without Cauchy Horizons
Popis výsledku anglicky
Mass inflation is a well established instability, conventionally associated to Cauchy horizons (which are also inner trapping horizons) of stationary geometries, leading to a divergent exponential buildup of energy. We show here that finite (but often large) exponential buildups of energy are present for dynamical geometries describing accreting black holes with slowly evolving inner trapping horizons, even in the absence of Cauchy horizons. The explicit evaluation of the adiabatic conditions behind these exponential buildups shows that this phenomenon is universally present for physically reasonable accreting conditions. This noneternal mass inflation does not require the introduction of global spacetime concepts. We also show that various known results in the literature are recovered in the limit in which the inner trapping horizon asymptotically approaches a Cauchy horizon. Our results imply that black hole geometries with nonextremal inner horizons, including the Kerr geometry in general relativity, and nonextremal regular black holes in theories beyond general relativity, can describe dynamical transients but not the long-lived end point of gravitational collapse.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07457S" target="_blank" >GA23-07457S: Skryté symetrie a chemie černých děr</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Letters
ISSN
0031-9007
e-ISSN
1079-7114
Svazek periodika
133
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
181402
Kód UT WoS článku
001349556800004
EID výsledku v databázi Scopus
2-s2.0-85209077619