Applying large language models for automated essay scoring for non-native Japanese
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A3AQKM2AE" target="_blank" >RIV/00216208:11320/25:3AQKM2AE - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195378013&doi=10.1057%2fs41599-024-03209-9&partnerID=40&md5=2df4ec39be1d1b6ad1fd8d241c682779" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195378013&doi=10.1057%2fs41599-024-03209-9&partnerID=40&md5=2df4ec39be1d1b6ad1fd8d241c682779</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1057/s41599-024-03209-9" target="_blank" >10.1057/s41599-024-03209-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applying large language models for automated essay scoring for non-native Japanese
Popis výsledku v původním jazyce
Recent advancements in artificial intelligence (AI) have led to an increased use of large language models (LLMs) for language assessment tasks such as automated essay scoring (AES), automated listening tests, and automated oral proficiency assessments. The application of LLMs for AES in the context of non-native Japanese, however, remains limited. This study explores the potential of LLM-based AES by comparing the efficiency of different models, i.e. two conventional machine training technology-based methods (Jess and JWriter), two LLMs (GPT and BERT), and one Japanese local LLM (Open-Calm large model). To conduct the evaluation, a dataset consisting of 1400 story-writing scripts authored by learners with 12 different first languages was used. Statistical analysis revealed that GPT-4 outperforms Jess and JWriter, BERT, and the Japanese language-specific trained Open-Calm large model in terms of annotation accuracy and predicting learning levels. Furthermore, by comparing 18 different models that utilize various prompts, the study emphasized the significance of prompts in achieving accurate and reliable evaluations using LLMs. © The Author(s) 2024.
Název v anglickém jazyce
Applying large language models for automated essay scoring for non-native Japanese
Popis výsledku anglicky
Recent advancements in artificial intelligence (AI) have led to an increased use of large language models (LLMs) for language assessment tasks such as automated essay scoring (AES), automated listening tests, and automated oral proficiency assessments. The application of LLMs for AES in the context of non-native Japanese, however, remains limited. This study explores the potential of LLM-based AES by comparing the efficiency of different models, i.e. two conventional machine training technology-based methods (Jess and JWriter), two LLMs (GPT and BERT), and one Japanese local LLM (Open-Calm large model). To conduct the evaluation, a dataset consisting of 1400 story-writing scripts authored by learners with 12 different first languages was used. Statistical analysis revealed that GPT-4 outperforms Jess and JWriter, BERT, and the Japanese language-specific trained Open-Calm large model in terms of annotation accuracy and predicting learning levels. Furthermore, by comparing 18 different models that utilize various prompts, the study emphasized the significance of prompts in achieving accurate and reliable evaluations using LLMs. © The Author(s) 2024.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Humanities and Social Sciences Communications
ISSN
2662-9992
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85195378013