Exploring Word Composition Knowledge in Language Usages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A3CZAUS8F" target="_blank" >RIV/00216208:11320/25:3CZAUS8F - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206220327&doi=10.1007%2f978-981-97-5501-1_5&partnerID=40&md5=2ba8c71ef813de335fc48f1749f9809d" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206220327&doi=10.1007%2f978-981-97-5501-1_5&partnerID=40&md5=2ba8c71ef813de335fc48f1749f9809d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-5501-1_5" target="_blank" >10.1007/978-981-97-5501-1_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring Word Composition Knowledge in Language Usages
Popis výsledku v původním jazyce
The creativity of language is a distinct feature that sets humans apart from machines and animals, where the flexibility of word composition is the fundamental part. The patterns on words that are systematically linked together are acknowledged as the word composition knowledge. We explore this knowledge by combining the syntax information with word semantics and verify it through a series of empirical experiments on multiple datasets. From the linguistic perspective, we found that this knowledge can find the appropriate alternatives for the given phrase and generate high-quality paraphrases that satisfy both the syntax soundness and the semantic consistency with the original text. We also verify it on the questionnaires in psychological testing and find the abnormal patterns on the language usages. Compared to the large pre-trained models, this method is much more training-economic and can generate the paraphrases in an explainable way. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Název v anglickém jazyce
Exploring Word Composition Knowledge in Language Usages
Popis výsledku anglicky
The creativity of language is a distinct feature that sets humans apart from machines and animals, where the flexibility of word composition is the fundamental part. The patterns on words that are systematically linked together are acknowledged as the word composition knowledge. We explore this knowledge by combining the syntax information with word semantics and verify it through a series of empirical experiments on multiple datasets. From the linguistic perspective, we found that this knowledge can find the appropriate alternatives for the given phrase and generate high-quality paraphrases that satisfy both the syntax soundness and the semantic consistency with the original text. We also verify it on the questionnaires in psychological testing and find the abnormal patterns on the language usages. Compared to the large pre-trained models, this method is much more training-economic and can generate the paraphrases in an explainable way. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lect. Notes Comput. Sci.
ISBN
978-981975500-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
61-72
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
—
Místo konání akce
Birmingham
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—