Challenges to Evaluating the Generalization of Coreference Resolution Models: A Measurement Modeling Perspective
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A4TNH2RWA" target="_blank" >RIV/00216208:11320/25:4TNH2RWA - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205326133&partnerID=40&md5=3c6551d74b97e2c16eb35165302506a8" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205326133&partnerID=40&md5=3c6551d74b97e2c16eb35165302506a8</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Challenges to Evaluating the Generalization of Coreference Resolution Models: A Measurement Modeling Perspective
Popis výsledku v původním jazyce
It is increasingly common to evaluate the same coreference resolution (CR) model on multiple datasets. Do these multi-dataset evaluations allow us to draw meaningful conclusions about model generalization? Or, do they rather reflect the idiosyncrasies of a particular experimental setup (e.g., the specific datasets used)? To study this, we view evaluation through the lens of measurement modeling, a framework commonly used in the social sciences for analyzing the validity of measurements. By taking this perspective, we show how multi-dataset evaluations risk conflating different factors concerning what, precisely, is being measured. This in turn makes it difficult to draw more generalizable conclusions from these evaluations. For instance, we show that across seven datasets, measurements intended to reflect CR model generalization are often correlated with differences in both how coreference is defined and how it is operationalized; this limits our ability to draw conclusions regarding the ability of CR models to generalize across any singular dimension. We believe the measurement modeling framework provides the needed vocabulary for discussing challenges surrounding what is actually being measured by CR evaluations. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
Challenges to Evaluating the Generalization of Coreference Resolution Models: A Measurement Modeling Perspective
Popis výsledku anglicky
It is increasingly common to evaluate the same coreference resolution (CR) model on multiple datasets. Do these multi-dataset evaluations allow us to draw meaningful conclusions about model generalization? Or, do they rather reflect the idiosyncrasies of a particular experimental setup (e.g., the specific datasets used)? To study this, we view evaluation through the lens of measurement modeling, a framework commonly used in the social sciences for analyzing the validity of measurements. By taking this perspective, we show how multi-dataset evaluations risk conflating different factors concerning what, precisely, is being measured. This in turn makes it difficult to draw more generalizable conclusions from these evaluations. For instance, we show that across seven datasets, measurements intended to reflect CR model generalization are often correlated with differences in both how coreference is defined and how it is operationalized; this limits our ability to draw conclusions regarding the ability of CR models to generalize across any singular dimension. We believe the measurement modeling framework provides the needed vocabulary for discussing challenges surrounding what is actually being measured by CR evaluations. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. Annu. Meet. Assoc. Comput Linguist.
ISBN
979-889176099-8
ISSN
0736-587X
e-ISSN
—
Počet stran výsledku
16
Strana od-do
15380-15395
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Hybrid, Bangkok
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—