Fine-Tuned Understanding: Enhancing Social Bot Detection with Transformer-Based Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A5EX7AX5X" target="_blank" >RIV/00216208:11320/25:5EX7AX5X - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200814228&doi=10.1109%2fACCESS.2024.3440657&partnerID=40&md5=bdf14a3d9efe0606aae4a9f82e7f16ce" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200814228&doi=10.1109%2fACCESS.2024.3440657&partnerID=40&md5=bdf14a3d9efe0606aae4a9f82e7f16ce</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3440657" target="_blank" >10.1109/ACCESS.2024.3440657</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fine-Tuned Understanding: Enhancing Social Bot Detection with Transformer-Based Classification
Popis výsledku v původním jazyce
In recent years, the proliferation of online communication platforms and social media has given rise to a new wave of challenges, including the rapid spread of malicious bots. These bots, often programmed to impersonate human users, can infiltrate online communities, disseminate misinformation, and engage in various activities detrimental to the integrity of digital discourse. It is becoming more and more difficult to discern a text produced by deep neural networks from that created by humans. Transformer-based Pre-trained Language Models (PLMs) have recently shown excellent results in challenges involving natural language understanding (NLU). The suggested method is to employ an approach to detect bots at the tweet level by utilizing content and fine-tuning PLMs, to reduce the current threat. Building on the recent developments of the BERT (Bidirectional Encoder Representations from Transformers) and GPT-3, the suggested model employs a text embedding approach. This method offers a high-quality representation that can enhance the efficacy of detection. In addition, a Feedforward Neural Network (FNN) was used on top of the PLMs for final classification. The model was experimentally evaluated using the Twitter bot dataset. The strategy was tested using test data that came from the same distribution as their training set. The methodology in this paper involves preprocessing Twitter data, generating contextual embeddings using PLMs, and designing a classification model that learns to differentiate between human users and bots. Experiments were carried out adopting advanced Language Models to construct an encoding of the tweet to create a potential input vector on top of BERT and their variants. By employing Transformer-based models, we achieve significant improvements in bot detection F1-score (93%) compared to traditional methods such as Word2Vec and Global Vectors for Word Representation (Glove). Accuracy improvements ranging from 3% to 24% compared to baselines were achieved. The capability of GPT-4, an advanced Large Language Model (LLM), in interpreting bot-generated content is examined in this research. Additionally, explainable artificial intelligence (XAI) was utilized alongside transformer-based models for detecting bots on social media, enhancing the transparency and reliability of these models. © 2013 IEEE.
Název v anglickém jazyce
Fine-Tuned Understanding: Enhancing Social Bot Detection with Transformer-Based Classification
Popis výsledku anglicky
In recent years, the proliferation of online communication platforms and social media has given rise to a new wave of challenges, including the rapid spread of malicious bots. These bots, often programmed to impersonate human users, can infiltrate online communities, disseminate misinformation, and engage in various activities detrimental to the integrity of digital discourse. It is becoming more and more difficult to discern a text produced by deep neural networks from that created by humans. Transformer-based Pre-trained Language Models (PLMs) have recently shown excellent results in challenges involving natural language understanding (NLU). The suggested method is to employ an approach to detect bots at the tweet level by utilizing content and fine-tuning PLMs, to reduce the current threat. Building on the recent developments of the BERT (Bidirectional Encoder Representations from Transformers) and GPT-3, the suggested model employs a text embedding approach. This method offers a high-quality representation that can enhance the efficacy of detection. In addition, a Feedforward Neural Network (FNN) was used on top of the PLMs for final classification. The model was experimentally evaluated using the Twitter bot dataset. The strategy was tested using test data that came from the same distribution as their training set. The methodology in this paper involves preprocessing Twitter data, generating contextual embeddings using PLMs, and designing a classification model that learns to differentiate between human users and bots. Experiments were carried out adopting advanced Language Models to construct an encoding of the tweet to create a potential input vector on top of BERT and their variants. By employing Transformer-based models, we achieve significant improvements in bot detection F1-score (93%) compared to traditional methods such as Word2Vec and Global Vectors for Word Representation (Glove). Accuracy improvements ranging from 3% to 24% compared to baselines were achieved. The capability of GPT-4, an advanced Large Language Model (LLM), in interpreting bot-generated content is examined in this research. Additionally, explainable artificial intelligence (XAI) was utilized alongside transformer-based models for detecting bots on social media, enhancing the transparency and reliability of these models. © 2013 IEEE.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
118250-118269
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85200814228