Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Where are we Still Split on Tokenization?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A6FBSGVSC" target="_blank" >RIV/00216208:11320/25:6FBSGVSC - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188745092&partnerID=40&md5=1ec486ce18b0cb9be7360d528093b48c" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188745092&partnerID=40&md5=1ec486ce18b0cb9be7360d528093b48c</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Where are we Still Split on Tokenization?

  • Popis výsledku v původním jazyce

    Many Natural Language Processing (NLP) tasks are labeled on the token level, for these tasks, the first step is to identify the tokens (tokenization). Because this step is often considered to be a solved problem, gold tokenization is commonly assumed. In this paper, we investigate if this task is solved with supervised tokenizers. To this end, we propose an effient multi-task model for tokenization that performs on-par with the state-of-the-art. We use this model to reflect on the status of performance on the tokenization task by evaluating on 122 languages in 20 different scripts. We show that tokenization performance is mainly dependent on the amount and consistency of annotated data as well as difficulty of the task in the writing systems. We conclude that besides inconsistencies in the data and exceptional cases the task can be considered solved for Latin languages for in-dataset settings (>99.5 F1). However, performance is 0.75 F1 point lower on average for datasets in other scripts and performance deteriorates in cross-dataset setups. © 2024 Association for Computational Linguistics.

  • Název v anglickém jazyce

    Where are we Still Split on Tokenization?

  • Popis výsledku anglicky

    Many Natural Language Processing (NLP) tasks are labeled on the token level, for these tasks, the first step is to identify the tokens (tokenization). Because this step is often considered to be a solved problem, gold tokenization is commonly assumed. In this paper, we investigate if this task is solved with supervised tokenizers. To this end, we propose an effient multi-task model for tokenization that performs on-par with the state-of-the-art. We use this model to reflect on the status of performance on the tokenization task by evaluating on 122 languages in 20 different scripts. We show that tokenization performance is mainly dependent on the amount and consistency of annotated data as well as difficulty of the task in the writing systems. We conclude that besides inconsistencies in the data and exceptional cases the task can be considered solved for Latin languages for in-dataset settings (>99.5 F1). However, performance is 0.75 F1 point lower on average for datasets in other scripts and performance deteriorates in cross-dataset setups. © 2024 Association for Computational Linguistics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    EACL - Conf. Eur. Chapter Assoc. Comput. Linguist., Find. EACL

  • ISBN

    979-889176093-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    20

  • Strana od-do

    118-137

  • Název nakladatele

    Association for Computational Linguistics (ACL)

  • Místo vydání

  • Místo konání akce

    St. Julian's

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku