Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multilevel Analysis of Biomedical Domain Adaptation of Llama 2: What Matters the Most? A Case Study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A6LB6FGDZ" target="_blank" >RIV/00216208:11320/25:6LB6FGDZ - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204435756&partnerID=40&md5=5eb5fe3c36a68abaa812f0b2322f179f" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204435756&partnerID=40&md5=5eb5fe3c36a68abaa812f0b2322f179f</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multilevel Analysis of Biomedical Domain Adaptation of Llama 2: What Matters the Most? A Case Study

  • Popis výsledku v původním jazyce

    Domain adaptation of Large Language Models (LLMs) leads to models better suited for a particular domain by capturing patterns from domain text which leads to improvements in downstream tasks. To the naked eye, these improvements are visible; however, the patterns are not so. How can we know which patterns and how much they contribute to changes in downstream scores? Through a Multilevel Analysis we discover and quantify the effect of text patterns on downstream scores of domain-adapted Llama 2 for the task of sentence similarity (BIOSSES dataset). We show that text patterns from PubMed abstracts such as clear writing and simplicity, as well as the amount of biomedical information, are the key for improving downstream scores. Also, we show how another factor not usually quantified contributes equally to downstream scores: choice of hyperparameters for both domain adaptation and fine-tuning.. ©2024 Association for Computational Linguistics.

  • Název v anglickém jazyce

    Multilevel Analysis of Biomedical Domain Adaptation of Llama 2: What Matters the Most? A Case Study

  • Popis výsledku anglicky

    Domain adaptation of Large Language Models (LLMs) leads to models better suited for a particular domain by capturing patterns from domain text which leads to improvements in downstream tasks. To the naked eye, these improvements are visible; however, the patterns are not so. How can we know which patterns and how much they contribute to changes in downstream scores? Through a Multilevel Analysis we discover and quantify the effect of text patterns on downstream scores of domain-adapted Llama 2 for the task of sentence similarity (BIOSSES dataset). We show that text patterns from PubMed abstracts such as clear writing and simplicity, as well as the amount of biomedical information, are the key for improving downstream scores. Also, we show how another factor not usually quantified contributes equally to downstream scores: choice of hyperparameters for both domain adaptation and fine-tuning.. ©2024 Association for Computational Linguistics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    BioNLP - Meet. ACL Spec. Interest Group Biomed. Nat. Lang. Process., Proc. Workshop Shar. Tasks

  • ISBN

    979-889176130-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    449-456

  • Název nakladatele

    Association for Computational Linguistics (ACL)

  • Místo vydání

  • Místo konání akce

    Bangkok

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku