Multilevel Analysis of Biomedical Domain Adaptation of Llama 2: What Matters the Most? A Case Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A6LB6FGDZ" target="_blank" >RIV/00216208:11320/25:6LB6FGDZ - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204435756&partnerID=40&md5=5eb5fe3c36a68abaa812f0b2322f179f" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204435756&partnerID=40&md5=5eb5fe3c36a68abaa812f0b2322f179f</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multilevel Analysis of Biomedical Domain Adaptation of Llama 2: What Matters the Most? A Case Study
Popis výsledku v původním jazyce
Domain adaptation of Large Language Models (LLMs) leads to models better suited for a particular domain by capturing patterns from domain text which leads to improvements in downstream tasks. To the naked eye, these improvements are visible; however, the patterns are not so. How can we know which patterns and how much they contribute to changes in downstream scores? Through a Multilevel Analysis we discover and quantify the effect of text patterns on downstream scores of domain-adapted Llama 2 for the task of sentence similarity (BIOSSES dataset). We show that text patterns from PubMed abstracts such as clear writing and simplicity, as well as the amount of biomedical information, are the key for improving downstream scores. Also, we show how another factor not usually quantified contributes equally to downstream scores: choice of hyperparameters for both domain adaptation and fine-tuning.. ©2024 Association for Computational Linguistics.
Název v anglickém jazyce
Multilevel Analysis of Biomedical Domain Adaptation of Llama 2: What Matters the Most? A Case Study
Popis výsledku anglicky
Domain adaptation of Large Language Models (LLMs) leads to models better suited for a particular domain by capturing patterns from domain text which leads to improvements in downstream tasks. To the naked eye, these improvements are visible; however, the patterns are not so. How can we know which patterns and how much they contribute to changes in downstream scores? Through a Multilevel Analysis we discover and quantify the effect of text patterns on downstream scores of domain-adapted Llama 2 for the task of sentence similarity (BIOSSES dataset). We show that text patterns from PubMed abstracts such as clear writing and simplicity, as well as the amount of biomedical information, are the key for improving downstream scores. Also, we show how another factor not usually quantified contributes equally to downstream scores: choice of hyperparameters for both domain adaptation and fine-tuning.. ©2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
BioNLP - Meet. ACL Spec. Interest Group Biomed. Nat. Lang. Process., Proc. Workshop Shar. Tasks
ISBN
979-889176130-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
449-456
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Bangkok
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—