Generating Phonetic Embeddings for Bulgarian Words with Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A8FSVT5AL" target="_blank" >RIV/00216208:11320/25:8FSVT5AL - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2024.clib-1.6" target="_blank" >https://aclanthology.org/2024.clib-1.6</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generating Phonetic Embeddings for Bulgarian Words with Neural Networks
Popis výsledku v původním jazyce
Word embeddings can be considered the cornerstone of modern natural language processing. They are used in many NLP tasks and allow us to create models that can understand the meaning of words. Most word embeddings model the semantics of the words. In this paper, we create phoneme-based word embeddings, which model how a word sounds. This is accomplished by training a neural network that can automatically generate transcriptions of Bulgarian words. We used the Jaccard index and direct comparison metrics to measure the performance of neural networks. The models perform nearly perfectly with the task of generating transcriptions. The model's word embeddings offer versatility across various applications, with its application in automatic paronym detection being particularly notable, as well as the task of detecting the language of origin of a Bulgarian word. The performance of this paronym detection is measured with the standard classifier metrics - accuracy, precision, recall, and F1.
Název v anglickém jazyce
Generating Phonetic Embeddings for Bulgarian Words with Neural Networks
Popis výsledku anglicky
Word embeddings can be considered the cornerstone of modern natural language processing. They are used in many NLP tasks and allow us to create models that can understand the meaning of words. Most word embeddings model the semantics of the words. In this paper, we create phoneme-based word embeddings, which model how a word sounds. This is accomplished by training a neural network that can automatically generate transcriptions of Bulgarian words. We used the Jaccard index and direct comparison metrics to measure the performance of neural networks. The models perform nearly perfectly with the task of generating transcriptions. The model's word embeddings offer versatility across various applications, with its application in automatic paronym detection being particularly notable, as well as the task of detecting the language of origin of a Bulgarian word. The performance of this paronym detection is measured with the standard classifier metrics - accuracy, precision, recall, and F1.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Sixth International Conference on Computational Linguistics in Bulgaria (CLIB 2024)
ISBN
—
ISSN
2367-5578
e-ISSN
—
Počet stran výsledku
9
Strana od-do
71-79
Název nakladatele
Department of Computational Linguistics, Institute for Bulgarian Language, Bulgarian Academy of Sciences
Místo vydání
—
Místo konání akce
Sofia, Bulgaria
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—