LCGbank: A Corpus of Syntactic Analyses Based on Proof Nets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A8NDFGWZI" target="_blank" >RIV/00216208:11320/25:8NDFGWZI - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195890953&partnerID=40&md5=0b98a9ed129e0c4e4be4c415474991ae" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195890953&partnerID=40&md5=0b98a9ed129e0c4e4be4c415474991ae</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LCGbank: A Corpus of Syntactic Analyses Based on Proof Nets
Popis výsledku v původním jazyce
In syntactic parsing, proof nets are graphical structures that have the advantageous property of invariance to spurious ambiguities. Semantically-equivalent derivations correspond to a single proof net. Recent years have seen fresh interest in statistical syntactic parsing with proof nets, including the development of methods based on neural networks. However, training of statistical parsers requires corpora that provide ground-truth syntactic analyses. Unfortunately, there has been a paucity of corpora in formalisms for which proof nets are applicable, such as Lambek categorial grammar (lcg), a formalism related to combinatory categorial grammar (ccg). To address this, we leverage CCGbank and the relationship between lcg and ccg to develop LCGbank, an English-language corpus of syntactic analyses based on lcg proof nets. In contrast to CCGbank, LCGbank eschews type-changing and uses only categorial rules; the syntactic analyses thus provide fully compositional semantics, exploiting the transparency between syntax and semantics that so characterizes categorial grammars. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Název v anglickém jazyce
LCGbank: A Corpus of Syntactic Analyses Based on Proof Nets
Popis výsledku anglicky
In syntactic parsing, proof nets are graphical structures that have the advantageous property of invariance to spurious ambiguities. Semantically-equivalent derivations correspond to a single proof net. Recent years have seen fresh interest in statistical syntactic parsing with proof nets, including the development of methods based on neural networks. However, training of statistical parsers requires corpora that provide ground-truth syntactic analyses. Unfortunately, there has been a paucity of corpora in formalisms for which proof nets are applicable, such as Lambek categorial grammar (lcg), a formalism related to combinatory categorial grammar (ccg). To address this, we leverage CCGbank and the relationship between lcg and ccg to develop LCGbank, an English-language corpus of syntactic analyses based on lcg proof nets. In contrast to CCGbank, LCGbank eschews type-changing and uses only categorial rules; the syntactic analyses thus provide fully compositional semantics, exploiting the transparency between syntax and semantics that so characterizes categorial grammars. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
10225-10236
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Torino, Italia
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—