The Role of Typological Feature Prediction in NLP and Linguistics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AB8UQ435M" target="_blank" >RIV/00216208:11320/25:B8UQ435M - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185579052&doi=10.1162%2fcoli_a_00498&partnerID=40&md5=7affcc9be399d4088d80d38e7c519479" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185579052&doi=10.1162%2fcoli_a_00498&partnerID=40&md5=7affcc9be399d4088d80d38e7c519479</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/coli_a_00498" target="_blank" >10.1162/coli_a_00498</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Role of Typological Feature Prediction in NLP and Linguistics
Popis výsledku v původním jazyce
Computational typology has gained traction in the field of Natural Language Processing (NLP) in recent years, as evidenced by the increasing number of papers on the topic and the establishment of a Special Interest Group on the topic (SIGTYP), including the organization of successful workshops and shared tasks. A considerable amount of work in this sub-field is concerned with prediction of typological features, for example, for databases such as the World Atlas of Language Structures (WALS) or Grambank. Prediction is argued to be useful either because (1) it allows for obtaining feature values for relatively undocumented languages, alleviating the sparseness in WALS, in turn argued to be useful for both NLP and linguistics; and (2) it allows us to probe models to see whether or not these typological features are encapsulated in, for example, language representations. In this article, we present a critical stance concerning prediction of typological features, investigating to what extent this line of research is aligned with purported needs—both from the perspective of NLP practitioners, and perhaps more importantly, from the perspective of linguists specialized in typology and language documentation. We provide evidence that this line of research in its current state suffers from a lack of interdisciplinary alignment. Based on an extensive survey of the linguistic typology community, we present concrete recommendations for future research in order to improve this alignment between linguists and NLP researchers, beyond the scope of typological feature prediction. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
The Role of Typological Feature Prediction in NLP and Linguistics
Popis výsledku anglicky
Computational typology has gained traction in the field of Natural Language Processing (NLP) in recent years, as evidenced by the increasing number of papers on the topic and the establishment of a Special Interest Group on the topic (SIGTYP), including the organization of successful workshops and shared tasks. A considerable amount of work in this sub-field is concerned with prediction of typological features, for example, for databases such as the World Atlas of Language Structures (WALS) or Grambank. Prediction is argued to be useful either because (1) it allows for obtaining feature values for relatively undocumented languages, alleviating the sparseness in WALS, in turn argued to be useful for both NLP and linguistics; and (2) it allows us to probe models to see whether or not these typological features are encapsulated in, for example, language representations. In this article, we present a critical stance concerning prediction of typological features, investigating to what extent this line of research is aligned with purported needs—both from the perspective of NLP practitioners, and perhaps more importantly, from the perspective of linguists specialized in typology and language documentation. We provide evidence that this line of research in its current state suffers from a lack of interdisciplinary alignment. Based on an extensive survey of the linguistic typology community, we present concrete recommendations for future research in order to improve this alignment between linguists and NLP researchers, beyond the scope of typological feature prediction. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Linguistics
ISSN
0891-2017
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
781-794
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85185579052