Language Model Based Unsupervised Dependency Parsing with Conditional Mutual Information and Grammatical Constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ABI2WUB95" target="_blank" >RIV/00216208:11320/25:BI2WUB95 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199510908&partnerID=40&md5=9842e4d36bf60c0cab8583f6264231b6" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199510908&partnerID=40&md5=9842e4d36bf60c0cab8583f6264231b6</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Language Model Based Unsupervised Dependency Parsing with Conditional Mutual Information and Grammatical Constraints
Popis výsledku v původním jazyce
Previous methods based on Large Language Models (LLM) perform unsupervised dependency parsing by maximizing bi-lexical dependence scores. However, these previous methods adopt dependence scores that are difficult to interpret. Furthermore, these methods cannot incorporate grammatical constraints that previous grammar-based parsing research has shown beneficial to improving parsing performance. In this work, we apply Conditional Mutual Information (CMI), an interpretable metric, to measure the bi-lexical dependence and incorporate grammatical constraints into LLM-based unsupervised parsing. We incorporate Part-Of-Speech information as a grammatical constraint at the CMI estimation stage and integrate two additional grammatical constraints at the subsequent tree decoding stage. We find that the CMI score positively correlates with syntactic dependencies and has a stronger correlation with the syntactic dependency than baseline scores. Our experiment confirms the effectiveness and applicability of the proposed grammatical constraints across five languages and eight datasets. The CMI parsing model outperforms state-of-the-art LLM-based models and similarly constrained grammar-based models. Our analysis reveals that the CMI model is strong in retrieving dependency relations with rich lexical interactions but is weak in retrieving relations with sparse lexical interactions, indicating a potential limitation in CMI-based unsupervised parsing methods. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
Language Model Based Unsupervised Dependency Parsing with Conditional Mutual Information and Grammatical Constraints
Popis výsledku anglicky
Previous methods based on Large Language Models (LLM) perform unsupervised dependency parsing by maximizing bi-lexical dependence scores. However, these previous methods adopt dependence scores that are difficult to interpret. Furthermore, these methods cannot incorporate grammatical constraints that previous grammar-based parsing research has shown beneficial to improving parsing performance. In this work, we apply Conditional Mutual Information (CMI), an interpretable metric, to measure the bi-lexical dependence and incorporate grammatical constraints into LLM-based unsupervised parsing. We incorporate Part-Of-Speech information as a grammatical constraint at the CMI estimation stage and integrate two additional grammatical constraints at the subsequent tree decoding stage. We find that the CMI score positively correlates with syntactic dependencies and has a stronger correlation with the syntactic dependency than baseline scores. Our experiment confirms the effectiveness and applicability of the proposed grammatical constraints across five languages and eight datasets. The CMI parsing model outperforms state-of-the-art LLM-based models and similarly constrained grammar-based models. Our analysis reveals that the CMI model is strong in retrieving dependency relations with rich lexical interactions but is weak in retrieving relations with sparse lexical interactions, indicating a potential limitation in CMI-based unsupervised parsing methods. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. Conf. North American Chapter Assoc. Comput. Linguist.: Hum. Lang. Technol., NAACL
ISBN
979-889176114-8
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
6355-6366
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Mexico City
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—