Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Language Model Based Unsupervised Dependency Parsing with Conditional Mutual Information and Grammatical Constraints

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ABI2WUB95" target="_blank" >RIV/00216208:11320/25:BI2WUB95 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199510908&partnerID=40&md5=9842e4d36bf60c0cab8583f6264231b6" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199510908&partnerID=40&md5=9842e4d36bf60c0cab8583f6264231b6</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Language Model Based Unsupervised Dependency Parsing with Conditional Mutual Information and Grammatical Constraints

  • Popis výsledku v původním jazyce

    Previous methods based on Large Language Models (LLM) perform unsupervised dependency parsing by maximizing bi-lexical dependence scores. However, these previous methods adopt dependence scores that are difficult to interpret. Furthermore, these methods cannot incorporate grammatical constraints that previous grammar-based parsing research has shown beneficial to improving parsing performance. In this work, we apply Conditional Mutual Information (CMI), an interpretable metric, to measure the bi-lexical dependence and incorporate grammatical constraints into LLM-based unsupervised parsing. We incorporate Part-Of-Speech information as a grammatical constraint at the CMI estimation stage and integrate two additional grammatical constraints at the subsequent tree decoding stage. We find that the CMI score positively correlates with syntactic dependencies and has a stronger correlation with the syntactic dependency than baseline scores. Our experiment confirms the effectiveness and applicability of the proposed grammatical constraints across five languages and eight datasets. The CMI parsing model outperforms state-of-the-art LLM-based models and similarly constrained grammar-based models. Our analysis reveals that the CMI model is strong in retrieving dependency relations with rich lexical interactions but is weak in retrieving relations with sparse lexical interactions, indicating a potential limitation in CMI-based unsupervised parsing methods. © 2024 Association for Computational Linguistics.

  • Název v anglickém jazyce

    Language Model Based Unsupervised Dependency Parsing with Conditional Mutual Information and Grammatical Constraints

  • Popis výsledku anglicky

    Previous methods based on Large Language Models (LLM) perform unsupervised dependency parsing by maximizing bi-lexical dependence scores. However, these previous methods adopt dependence scores that are difficult to interpret. Furthermore, these methods cannot incorporate grammatical constraints that previous grammar-based parsing research has shown beneficial to improving parsing performance. In this work, we apply Conditional Mutual Information (CMI), an interpretable metric, to measure the bi-lexical dependence and incorporate grammatical constraints into LLM-based unsupervised parsing. We incorporate Part-Of-Speech information as a grammatical constraint at the CMI estimation stage and integrate two additional grammatical constraints at the subsequent tree decoding stage. We find that the CMI score positively correlates with syntactic dependencies and has a stronger correlation with the syntactic dependency than baseline scores. Our experiment confirms the effectiveness and applicability of the proposed grammatical constraints across five languages and eight datasets. The CMI parsing model outperforms state-of-the-art LLM-based models and similarly constrained grammar-based models. Our analysis reveals that the CMI model is strong in retrieving dependency relations with rich lexical interactions but is weak in retrieving relations with sparse lexical interactions, indicating a potential limitation in CMI-based unsupervised parsing methods. © 2024 Association for Computational Linguistics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proc. Conf. North American Chapter Assoc. Comput. Linguist.: Hum. Lang. Technol., NAACL

  • ISBN

    979-889176114-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    6355-6366

  • Název nakladatele

    Association for Computational Linguistics (ACL)

  • Místo vydání

  • Místo konání akce

    Mexico City

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku