Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Development of Community-Oriented Text-to-Speech Models for Māori 'Avaiki Nui (Cook Islands Māori)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ABK8GEVCF" target="_blank" >RIV/00216208:11320/25:BK8GEVCF - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195898375&partnerID=40&md5=9ad4db0bc8a75eb4b8ad8b55ebe40427" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195898375&partnerID=40&md5=9ad4db0bc8a75eb4b8ad8b55ebe40427</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Development of Community-Oriented Text-to-Speech Models for Māori 'Avaiki Nui (Cook Islands Māori)

  • Popis výsledku v původním jazyce

    In this paper we describe the development of a text-to-speech system for Māori 'Avaiki Nui (Cook Islands Māori). We provide details about the process of community-collaboration that was followed throughout the project, a continued engagement where we are trying to develop speech and language technology for the benefit of the community. During this process we gathered a group of recordings that we used to train a TTS system. When training we used two approaches, the HMM-system MaryTTS (Schröder et al., 2011) and the deep learning system FastSpeech2 (Ren et al., 2020). We performed two evaluation tasks on the models: First, we measured their quality by having the synthesized speech transcribed by ASR. The human produced ground truth had lower error rates (CER=4.3, WER=18), but the FastSpeech2 audio has lower error rates (CER=11.8 and WER=42.7) than the MaryTTS voice (CER=17.9 and WER=48.1). The second evaluation was a survey amongst speakers of the language so they could judge the voice's quality. The ground truth was rated with the highest quality (MOS=4.6), but the FastSpeech2 voice had an overall quality of MOS=3.2, which was significantly higher than that of the MaryTTS synthesized recordings (MOS=2.0). We intend to use the FastSpeech2 model to create language learning tools for community members both on the Cook Islands and in the diaspora. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.

  • Název v anglickém jazyce

    Development of Community-Oriented Text-to-Speech Models for Māori 'Avaiki Nui (Cook Islands Māori)

  • Popis výsledku anglicky

    In this paper we describe the development of a text-to-speech system for Māori 'Avaiki Nui (Cook Islands Māori). We provide details about the process of community-collaboration that was followed throughout the project, a continued engagement where we are trying to develop speech and language technology for the benefit of the community. During this process we gathered a group of recordings that we used to train a TTS system. When training we used two approaches, the HMM-system MaryTTS (Schröder et al., 2011) and the deep learning system FastSpeech2 (Ren et al., 2020). We performed two evaluation tasks on the models: First, we measured their quality by having the synthesized speech transcribed by ASR. The human produced ground truth had lower error rates (CER=4.3, WER=18), but the FastSpeech2 audio has lower error rates (CER=11.8 and WER=42.7) than the MaryTTS voice (CER=17.9 and WER=48.1). The second evaluation was a survey amongst speakers of the language so they could judge the voice's quality. The ground truth was rated with the highest quality (MOS=4.6), but the FastSpeech2 voice had an overall quality of MOS=3.2, which was significantly higher than that of the MaryTTS synthesized recordings (MOS=2.0). We intend to use the FastSpeech2 model to create language learning tools for community members both on the Cook Islands and in the diaspora. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.

  • ISBN

    978-249381410-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    4820-4831

  • Název nakladatele

    European Language Resources Association (ELRA)

  • Místo vydání

  • Místo konání akce

    Torino, Italia

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku