Exploring the complexity of natural languages: A fuzzy evaluative perspective on Greenberg universals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ABXM7EXK9" target="_blank" >RIV/00216208:11320/25:BXM7EXK9 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180224727&doi=10.3934%2fmath.2024109&partnerID=40&md5=c97d17485cec25505ebe07bf56b79ee3" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180224727&doi=10.3934%2fmath.2024109&partnerID=40&md5=c97d17485cec25505ebe07bf56b79ee3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/math.2024109" target="_blank" >10.3934/math.2024109</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring the complexity of natural languages: A fuzzy evaluative perspective on Greenberg universals
Popis výsledku v původním jazyce
In this paper, we introduced a fuzzy model for calculating complexity based on universality, aiming to measure the complexity of natural languages in terms of the degree of universality exhibited in their rules. We validated the model by conducting experiments on a corpus of 143 languages obtained from Universal Dependencies 2.11. To formalize the linguistic universals proposed by Greenberg, we employed the Grew tool to convert them into a formal rule representation. This formalization enables the verification of universals within the corpus. By analyzing the corpus, we extracted the occurrences of each universal in different languages. The obtained results were used to define a fuzzy model that quantifies the degree of universality and complexity of both the Greenberg universals and the languages themselves, employing the mathematical theory of evaluative expressions from fuzzy natural logic (FNL). Our analysis revealed an inversely proportional relationship between the degree of universality and the level of complexity observed in the languages. The implications of our findings extended to various applications in the theoretical analysis and computational treatment of languages. In addition, the proposed model offered insights into the nature of language complexity, providing a valuable framework for further research and exploration. © 2024 the Author(s), licensee AIMS Press.
Název v anglickém jazyce
Exploring the complexity of natural languages: A fuzzy evaluative perspective on Greenberg universals
Popis výsledku anglicky
In this paper, we introduced a fuzzy model for calculating complexity based on universality, aiming to measure the complexity of natural languages in terms of the degree of universality exhibited in their rules. We validated the model by conducting experiments on a corpus of 143 languages obtained from Universal Dependencies 2.11. To formalize the linguistic universals proposed by Greenberg, we employed the Grew tool to convert them into a formal rule representation. This formalization enables the verification of universals within the corpus. By analyzing the corpus, we extracted the occurrences of each universal in different languages. The obtained results were used to define a fuzzy model that quantifies the degree of universality and complexity of both the Greenberg universals and the languages themselves, employing the mathematical theory of evaluative expressions from fuzzy natural logic (FNL). Our analysis revealed an inversely proportional relationship between the degree of universality and the level of complexity observed in the languages. The implications of our findings extended to various applications in the theoretical analysis and computational treatment of languages. In addition, the proposed model offered insights into the nature of language complexity, providing a valuable framework for further research and exploration. © 2024 the Author(s), licensee AIMS Press.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AIMS Mathematics
ISSN
2473-6988
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
34
Strana od-do
2181-2214
Kód UT WoS článku
001141943700044
EID výsledku v databázi Scopus
2-s2.0-85180224727