Can Pretrained English Language Models Benefit Non-English NLP Systems in Low-Resource Scenarios?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AC6SW9ESX" target="_blank" >RIV/00216208:11320/25:C6SW9ESX - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153499625&doi=10.1109%2fTASLP.2023.3267618&partnerID=40&md5=791fbbb9ec53d2cbc190d4bb210838c1" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153499625&doi=10.1109%2fTASLP.2023.3267618&partnerID=40&md5=791fbbb9ec53d2cbc190d4bb210838c1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TASLP.2023.3267618" target="_blank" >10.1109/TASLP.2023.3267618</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Can Pretrained English Language Models Benefit Non-English NLP Systems in Low-Resource Scenarios?
Popis výsledku v původním jazyce
Pretrained language models have achieved great success in a wide range of natural language processing (NLP) problems, because they learn language representations from large-scale text corpora and can adapt to downstream tasks by finetuning them on annotated task data. However, such success relies on both large-scale text and annotated data, so the lack of training data is a major practical problem for many languages, especially low-resource languages. In this paper, we explore whether a pretrained English language model can benefit non-English NLP systems in low-resource scenarios, i.e., with limited text corpora or annotated data. To achieve this, we first propose cross-lingual knowledge transfer methods and then validate our methods in low-resource scenarios. Specifically, our cross-lingual knowledge transfer methods are applied in the training stages of language model pretraining or downstream finetuning. At the two stages, the methods are designed for the transfer of upstream general knowledge or downstream task-specific knowledge, respectively. In the experiments, we perform pretraining and finetuning with limited non-English data to simulate the low-resource scenarios. We evaluate our methods on ten downstream tasks over a wide range of languages, and present systematic comparisons among various knowledge transfer methods. Experimental results show that our methods successfully leverage a pretrained English language model to improve task performance in other languages. Besides, we demonstrate the multilinguality of the English language model in various application scenarios. Our findings imply the possibility to improve low-resource-language NLP systems with large-scale English language models. © 2023 IEEE.
Název v anglickém jazyce
Can Pretrained English Language Models Benefit Non-English NLP Systems in Low-Resource Scenarios?
Popis výsledku anglicky
Pretrained language models have achieved great success in a wide range of natural language processing (NLP) problems, because they learn language representations from large-scale text corpora and can adapt to downstream tasks by finetuning them on annotated task data. However, such success relies on both large-scale text and annotated data, so the lack of training data is a major practical problem for many languages, especially low-resource languages. In this paper, we explore whether a pretrained English language model can benefit non-English NLP systems in low-resource scenarios, i.e., with limited text corpora or annotated data. To achieve this, we first propose cross-lingual knowledge transfer methods and then validate our methods in low-resource scenarios. Specifically, our cross-lingual knowledge transfer methods are applied in the training stages of language model pretraining or downstream finetuning. At the two stages, the methods are designed for the transfer of upstream general knowledge or downstream task-specific knowledge, respectively. In the experiments, we perform pretraining and finetuning with limited non-English data to simulate the low-resource scenarios. We evaluate our methods on ten downstream tasks over a wide range of languages, and present systematic comparisons among various knowledge transfer methods. Experimental results show that our methods successfully leverage a pretrained English language model to improve task performance in other languages. Besides, we demonstrate the multilinguality of the English language model in various application scenarios. Our findings imply the possibility to improve low-resource-language NLP systems with large-scale English language models. © 2023 IEEE.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE/ACM Transactions on Audio Speech and Language Processing
ISSN
2329-9290
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1061-1074
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85153499625