Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Can Pretrained English Language Models Benefit Non-English NLP Systems in Low-Resource Scenarios?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AC6SW9ESX" target="_blank" >RIV/00216208:11320/25:C6SW9ESX - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153499625&doi=10.1109%2fTASLP.2023.3267618&partnerID=40&md5=791fbbb9ec53d2cbc190d4bb210838c1" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153499625&doi=10.1109%2fTASLP.2023.3267618&partnerID=40&md5=791fbbb9ec53d2cbc190d4bb210838c1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TASLP.2023.3267618" target="_blank" >10.1109/TASLP.2023.3267618</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Can Pretrained English Language Models Benefit Non-English NLP Systems in Low-Resource Scenarios?

  • Popis výsledku v původním jazyce

    Pretrained language models have achieved great success in a wide range of natural language processing (NLP) problems, because they learn language representations from large-scale text corpora and can adapt to downstream tasks by finetuning them on annotated task data. However, such success relies on both large-scale text and annotated data, so the lack of training data is a major practical problem for many languages, especially low-resource languages. In this paper, we explore whether a pretrained English language model can benefit non-English NLP systems in low-resource scenarios, i.e., with limited text corpora or annotated data. To achieve this, we first propose cross-lingual knowledge transfer methods and then validate our methods in low-resource scenarios. Specifically, our cross-lingual knowledge transfer methods are applied in the training stages of language model pretraining or downstream finetuning. At the two stages, the methods are designed for the transfer of upstream general knowledge or downstream task-specific knowledge, respectively. In the experiments, we perform pretraining and finetuning with limited non-English data to simulate the low-resource scenarios. We evaluate our methods on ten downstream tasks over a wide range of languages, and present systematic comparisons among various knowledge transfer methods. Experimental results show that our methods successfully leverage a pretrained English language model to improve task performance in other languages. Besides, we demonstrate the multilinguality of the English language model in various application scenarios. Our findings imply the possibility to improve low-resource-language NLP systems with large-scale English language models. © 2023 IEEE.

  • Název v anglickém jazyce

    Can Pretrained English Language Models Benefit Non-English NLP Systems in Low-Resource Scenarios?

  • Popis výsledku anglicky

    Pretrained language models have achieved great success in a wide range of natural language processing (NLP) problems, because they learn language representations from large-scale text corpora and can adapt to downstream tasks by finetuning them on annotated task data. However, such success relies on both large-scale text and annotated data, so the lack of training data is a major practical problem for many languages, especially low-resource languages. In this paper, we explore whether a pretrained English language model can benefit non-English NLP systems in low-resource scenarios, i.e., with limited text corpora or annotated data. To achieve this, we first propose cross-lingual knowledge transfer methods and then validate our methods in low-resource scenarios. Specifically, our cross-lingual knowledge transfer methods are applied in the training stages of language model pretraining or downstream finetuning. At the two stages, the methods are designed for the transfer of upstream general knowledge or downstream task-specific knowledge, respectively. In the experiments, we perform pretraining and finetuning with limited non-English data to simulate the low-resource scenarios. We evaluate our methods on ten downstream tasks over a wide range of languages, and present systematic comparisons among various knowledge transfer methods. Experimental results show that our methods successfully leverage a pretrained English language model to improve task performance in other languages. Besides, we demonstrate the multilinguality of the English language model in various application scenarios. Our findings imply the possibility to improve low-resource-language NLP systems with large-scale English language models. © 2023 IEEE.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE/ACM Transactions on Audio Speech and Language Processing

  • ISSN

    2329-9290

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    1061-1074

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85153499625