Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ACCYPWNRV" target="_blank" >RIV/00216208:11320/25:CCYPWNRV - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182811160&doi=10.1007%2fs00530-023-01205-8&partnerID=40&md5=f43954a8e2452cba63564609df02082a" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182811160&doi=10.1007%2fs00530-023-01205-8&partnerID=40&md5=f43954a8e2452cba63564609df02082a</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00530-023-01205-8" target="_blank" >10.1007/s00530-023-01205-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network

  • Popis výsledku v původním jazyce

    Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while maintaining good discriminability, and measuring the semantic similarity between different instances. To tackle these issues, we introduce an end-to-end video–text retrieval framework which exploit Multi-Modal Masked Transformer and Adaptive Attribute-Aware Graph Convolutional Network (M 3 Trans-A 3 GCN). Specifically, the features extracted from videos and texts are fed into M 3 Trans to jointly integrate the multi-modal content and mask irrelevant multi-modal context. Subsequently, a novel GCN with an adaptive correlation matrix (i.e., A 3 GCN) is constructed to obtain discriminative video representation for video–text retrieval. To better measure the semantic similarity between video–text pairs during training, we propose a novel Text-semantic-guided Multi-Modal Cross-Entropy (TMCE) loss function. Here, the similarity between different video–text pairs within a batch is computed based on the features of the corresponding text rather than their instance labels. Comprehensive experimental results on three benchmark datasets, MSR-VTT, MSVD and LSMDC, demonstrate the superiority of M 3 Trans-A 3 GCN, compared with the state-of-the-art methods in video–text retrieval. © 2024, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

  • Název v anglickém jazyce

    Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network

  • Popis výsledku anglicky

    Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while maintaining good discriminability, and measuring the semantic similarity between different instances. To tackle these issues, we introduce an end-to-end video–text retrieval framework which exploit Multi-Modal Masked Transformer and Adaptive Attribute-Aware Graph Convolutional Network (M 3 Trans-A 3 GCN). Specifically, the features extracted from videos and texts are fed into M 3 Trans to jointly integrate the multi-modal content and mask irrelevant multi-modal context. Subsequently, a novel GCN with an adaptive correlation matrix (i.e., A 3 GCN) is constructed to obtain discriminative video representation for video–text retrieval. To better measure the semantic similarity between video–text pairs during training, we propose a novel Text-semantic-guided Multi-Modal Cross-Entropy (TMCE) loss function. Here, the similarity between different video–text pairs within a batch is computed based on the features of the corresponding text rather than their instance labels. Comprehensive experimental results on three benchmark datasets, MSR-VTT, MSVD and LSMDC, demonstrate the superiority of M 3 Trans-A 3 GCN, compared with the state-of-the-art methods in video–text retrieval. © 2024, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Multimedia Systems

  • ISSN

    0942-4962

  • e-ISSN

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85182811160