Fundus: A Simple-to-Use News Scraper Optimized for High Quality Extractions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AD5V2ZSTV" target="_blank" >RIV/00216208:11320/25:D5V2ZSTV - isvavai.cz</a>
Výsledek na webu
<a href="http://arxiv.org/abs/2403.15279" target="_blank" >http://arxiv.org/abs/2403.15279</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48550/arXiv.2403.15279" target="_blank" >10.48550/arXiv.2403.15279</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fundus: A Simple-to-Use News Scraper Optimized for High Quality Extractions
Popis výsledku v původním jazyce
This paper introduces Fundus, a user-friendly news scraper that enables users to obtain millions of high-quality news articles with just a few lines of code. Unlike existing news scrapers, we use manually crafted, bespoke content extractors that are specifically tailored to the formatting guidelines of each supported online newspaper. This allows us to optimize our scraping for quality such that retrieved news articles are textually complete and without HTML artifacts. Further, our framework combines both crawling (retrieving HTML from the web or large web archives) and content extraction into a single pipeline. By providing a unified interface for a predefined collection of newspapers, we aim to make Fundus broadly usable even for non-technical users. This paper gives an overview of the framework, discusses our design choices, and presents a comparative evaluation against other popular news scrapers. Our evaluation shows that Fundus yields significantly higher quality extractions (complete and artifact-free news articles) than prior work. The framework is available on GitHub under https://github.com/flairNLP/fundus and can be simply installed using pip.
Název v anglickém jazyce
Fundus: A Simple-to-Use News Scraper Optimized for High Quality Extractions
Popis výsledku anglicky
This paper introduces Fundus, a user-friendly news scraper that enables users to obtain millions of high-quality news articles with just a few lines of code. Unlike existing news scrapers, we use manually crafted, bespoke content extractors that are specifically tailored to the formatting guidelines of each supported online newspaper. This allows us to optimize our scraping for quality such that retrieved news articles are textually complete and without HTML artifacts. Further, our framework combines both crawling (retrieving HTML from the web or large web archives) and content extraction into a single pipeline. By providing a unified interface for a predefined collection of newspapers, we aim to make Fundus broadly usable even for non-technical users. This paper gives an overview of the framework, discusses our design choices, and presents a comparative evaluation against other popular news scrapers. Our evaluation shows that Fundus yields significantly higher quality extractions (complete and artifact-free news articles) than prior work. The framework is available on GitHub under https://github.com/flairNLP/fundus and can be simply installed using pip.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
ISBN
979-889176096-7
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
305-314
Název nakladatele
arXiv
Místo vydání
—
Místo konání akce
Bangkok
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—