Latin Treebanks in Review: An Evaluation of Morphological Tagging Across Time
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ADA7KHNJ6" target="_blank" >RIV/00216208:11320/25:DA7KHNJ6 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204809265&partnerID=40&md5=c1292301b87f9a90321c2b969df83e5f" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204809265&partnerID=40&md5=c1292301b87f9a90321c2b969df83e5f</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Latin Treebanks in Review: An Evaluation of Morphological Tagging Across Time
Popis výsledku v původním jazyce
Existing Latin treebanks draw from Latin’s long written tradition, spanning 17 centuries and a variety of cultures. Recent efforts have begun to harmonize these treebanks’ annotations to better train and evaluate morphological taggers. However, the heterogeneity of these treebanks must be carefully considered to build effective and reliable data. In this work, we review existing Latin treebanks to identify the texts they draw from, identify their overlap, and document their coverage across time and genre. We additionally design automated conversions of their morphological feature annotations into the conventions of standard Latin grammar. From this, we build new time-period data splits that draw from the existing treebanks which we use to perform a broad cross-time analysis for POS and morphological feature tagging. We find that BERT-based taggers outperform existing taggers while also being more robust to cross-domain shifts. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
Latin Treebanks in Review: An Evaluation of Morphological Tagging Across Time
Popis výsledku anglicky
Existing Latin treebanks draw from Latin’s long written tradition, spanning 17 centuries and a variety of cultures. Recent efforts have begun to harmonize these treebanks’ annotations to better train and evaluate morphological taggers. However, the heterogeneity of these treebanks must be carefully considered to build effective and reliable data. In this work, we review existing Latin treebanks to identify the texts they draw from, identify their overlap, and document their coverage across time and genre. We additionally design automated conversions of their morphological feature annotations into the conventions of standard Latin grammar. From this, we build new time-period data splits that draw from the existing treebanks which we use to perform a broad cross-time analysis for POS and morphological feature tagging. We find that BERT-based taggers outperform existing taggers while also being more robust to cross-domain shifts. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ML4AL - Workshop Mach. Learn. Anc. Lang., Proc. Workshop
ISBN
979-889176144-5
ISSN
—
e-ISSN
—
Počet stran výsledku
16
Strana od-do
203-218
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Hybrid, Bangkok
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—