Decomposed Meta-Learning for Few-Shot Sequence Labeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AEIUTYMTK" target="_blank" >RIV/00216208:11320/25:EIUTYMTK - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187378886&doi=10.1109%2fTASLP.2024.3372879&partnerID=40&md5=5e65c0a82d01180d43b50077e344f24f" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187378886&doi=10.1109%2fTASLP.2024.3372879&partnerID=40&md5=5e65c0a82d01180d43b50077e344f24f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TASLP.2024.3372879" target="_blank" >10.1109/TASLP.2024.3372879</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decomposed Meta-Learning for Few-Shot Sequence Labeling
Popis výsledku v původním jazyce
Few-shot sequence labeling is a general problem formulation for many natural language understanding tasks in data-scarcity scenarios, which require models to generalize to new types via only a few labeled examples. Recent advances mostly adopt metric-based meta-learning and thus face the challenges of modeling the miscellaneous Other prototype and the inability to generalize to classes with large domain gaps. To overcome these challenges, we propose a decomposed meta-learning framework for few-shot sequence labeling that breaks down the task into few-shot mention detection and few-shot type classification, and sequentially tackles them via meta-learning. Specifically, we employ model-agnostic meta-learning (MAML) to prompt the mention detection model to learn boundary knowledge shared across types. With the detected mention spans, we further leverage the MAML-enhanced span-level prototypical network for few-shot type classification. In this way, the decomposition framework bypasses the requirement of modeling the miscellaneous Other prototype. Meanwhile, the adoption of the MAML algorithm enables us to explore the knowledge contained in support examples more efficiently, so that our model can quickly adapt to new types using only a few labeled examples. Under our framework, we explore a basic implementation that uses two separate models for the two subtasks. We further propose a joint model to reduce model size and inference time, making our framework more applicable for scenarios with limited resources. Extensive experiments on nine benchmark datasets, including named entity recognition, slot tagging, event detection, and part-of-speech tagging, show that the proposed approach achieves start-of-the-art performance across various few-shot sequence labeling tasks. © 2014 IEEE.
Název v anglickém jazyce
Decomposed Meta-Learning for Few-Shot Sequence Labeling
Popis výsledku anglicky
Few-shot sequence labeling is a general problem formulation for many natural language understanding tasks in data-scarcity scenarios, which require models to generalize to new types via only a few labeled examples. Recent advances mostly adopt metric-based meta-learning and thus face the challenges of modeling the miscellaneous Other prototype and the inability to generalize to classes with large domain gaps. To overcome these challenges, we propose a decomposed meta-learning framework for few-shot sequence labeling that breaks down the task into few-shot mention detection and few-shot type classification, and sequentially tackles them via meta-learning. Specifically, we employ model-agnostic meta-learning (MAML) to prompt the mention detection model to learn boundary knowledge shared across types. With the detected mention spans, we further leverage the MAML-enhanced span-level prototypical network for few-shot type classification. In this way, the decomposition framework bypasses the requirement of modeling the miscellaneous Other prototype. Meanwhile, the adoption of the MAML algorithm enables us to explore the knowledge contained in support examples more efficiently, so that our model can quickly adapt to new types using only a few labeled examples. Under our framework, we explore a basic implementation that uses two separate models for the two subtasks. We further propose a joint model to reduce model size and inference time, making our framework more applicable for scenarios with limited resources. Extensive experiments on nine benchmark datasets, including named entity recognition, slot tagging, event detection, and part-of-speech tagging, show that the proposed approach achieves start-of-the-art performance across various few-shot sequence labeling tasks. © 2014 IEEE.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE/ACM Transactions on Audio Speech and Language Processing
ISSN
2329-9290
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1980-1993
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85187378886