Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nostra Domina at EvaLatin 2024: Improving Latin Polarity Detection through Data Augmentation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AGQ8FT4KA" target="_blank" >RIV/00216208:11320/25:GQ8FT4KA - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195205724&partnerID=40&md5=bc16136cb13a2241bf1ac80d5041051b" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195205724&partnerID=40&md5=bc16136cb13a2241bf1ac80d5041051b</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nostra Domina at EvaLatin 2024: Improving Latin Polarity Detection through Data Augmentation

  • Popis výsledku v původním jazyce

    This paper describes submissions from the team Nostra Domina to the EvaLatin 2024 shared task of emotion polarity detection. Given the low-resource environment of Latin and the complexity of sentiment in rhetorical genres like poetry, we augmented the available data through automatic polarity annotation. We present two methods for doing so on the basis of the k-means algorithm, and we employ a variety of Latin large language models (LLMs) in a neural architecture to better capture the underlying contextual sentiment representations. Our best approach achieved the second highest macro-averaged Macro-F1 score on the shared task’s test set. © 2024 ELRA Language Resources Association: CC BY-NC 4.0.

  • Název v anglickém jazyce

    Nostra Domina at EvaLatin 2024: Improving Latin Polarity Detection through Data Augmentation

  • Popis výsledku anglicky

    This paper describes submissions from the team Nostra Domina to the EvaLatin 2024 shared task of emotion polarity detection. Given the low-resource environment of Latin and the complexity of sentiment in rhetorical genres like poetry, we augmented the available data through automatic polarity annotation. We present two methods for doing so on the basis of the k-means algorithm, and we employ a variety of Latin large language models (LLMs) in a neural architecture to better capture the underlying contextual sentiment representations. Our best approach achieved the second highest macro-averaged Macro-F1 score on the shared task’s test set. © 2024 ELRA Language Resources Association: CC BY-NC 4.0.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Workshop Lang. Technol. Hist. Anc. Lang., LT4HALA LREC-COLING - Workshop Proc.

  • ISBN

    978-249381446-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    215-222

  • Název nakladatele

    European Language Resources Association (ELRA)

  • Místo vydání

  • Místo konání akce

    Torino, Italia

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku