Navigating Cross-Lingual Natural Language Processing: Challenges, Strategies, and Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AI89URPFH" target="_blank" >RIV/00216208:11320/25:I89URPFH - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201101707&doi=10.1007%2f978-981-97-2716-2_19&partnerID=40&md5=39ce5825df4f63ba7fdd524197d8fdaf" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201101707&doi=10.1007%2f978-981-97-2716-2_19&partnerID=40&md5=39ce5825df4f63ba7fdd524197d8fdaf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-2716-2_19" target="_blank" >10.1007/978-981-97-2716-2_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Navigating Cross-Lingual Natural Language Processing: Challenges, Strategies, and Applications
Popis výsledku v původním jazyce
Modern techniques for most Natural Language Processing (NLP) activities have attained near-human functionality. This latest advancement has benefited countless individuals and companies throughout the globe. Unfortunately, most massive tagged databases are only accessible in a couple of languages; for many languages, either few or no tags are accessible to enable automatic NLP uses. As a result, among the priorities of cross-lingual NLP study is to build computing algorithms that leverage abundant resource corpora of languages and employ them in limited-resource language uses through transportable illustration learning. The paper covers the basic difficulties and suggests multiple approaches for cross-lingual illustration learning that employ common syntax dependence to link typological variations across languages and efficiently use unmarked supplies to learn solid and generalizable depictions. The methodologies suggested in this research efficiently translate across a broad spectrum of languages and NLP uses such as dependent parsing, titled entity identification, text categorization, query replying, and others. Test outcomes reveal that enhancing mBERT with syntax increases cross-lingual transfer by 1.4 and 1.6 scores on average for every targeted language in PAWS-X and MLQR, respectively. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Název v anglickém jazyce
Navigating Cross-Lingual Natural Language Processing: Challenges, Strategies, and Applications
Popis výsledku anglicky
Modern techniques for most Natural Language Processing (NLP) activities have attained near-human functionality. This latest advancement has benefited countless individuals and companies throughout the globe. Unfortunately, most massive tagged databases are only accessible in a couple of languages; for many languages, either few or no tags are accessible to enable automatic NLP uses. As a result, among the priorities of cross-lingual NLP study is to build computing algorithms that leverage abundant resource corpora of languages and employ them in limited-resource language uses through transportable illustration learning. The paper covers the basic difficulties and suggests multiple approaches for cross-lingual illustration learning that employ common syntax dependence to link typological variations across languages and efficiently use unmarked supplies to learn solid and generalizable depictions. The methodologies suggested in this research efficiently translate across a broad spectrum of languages and NLP uses such as dependent parsing, titled entity identification, text categorization, query replying, and others. Test outcomes reveal that enhancing mBERT with syntax increases cross-lingual transfer by 1.4 and 1.6 scores on average for every targeted language in PAWS-X and MLQR, respectively. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Smart Innov. Syst. Technol.
ISBN
978-981972715-5
ISSN
2190-3018
e-ISSN
—
Počet stran výsledku
12
Strana od-do
203-214
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
—
Místo konání akce
Noida
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—