Improving Latin Dependency Parsing by Combining Treebanks and Predictions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AIHFX53EU" target="_blank" >RIV/00216208:11320/25:IHFX53EU - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85216580264&partnerID=40&md5=ef3021de3b5b84c97577b16b7f7d7772" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85216580264&partnerID=40&md5=ef3021de3b5b84c97577b16b7f7d7772</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Latin Dependency Parsing by Combining Treebanks and Predictions
Popis výsledku v původním jazyce
This paper introduces new models designed to improve the morpho-syntactic parsing of the five largest Latin treebanks in the Universal Dependencies (UD) framework.First, using two state-of-the-art parsers, Trankit and Stanza, along with our custom UD tagger, we train new models on the five treebanks both individually and by combining them into novel merged datasets.We also test the models on the CIRCSE test set.In an additional experiment, we evaluate whether this set can be accurately tagged using the novel LASLA corpus (https://github.com/CIRCSE/LASLA).Second, we aim to improve the results by combining the predictions of different models through an atomic morphological feature voting system.The results of our two main experiments demonstrate significant improvements, particularly for the smaller treebanks, with LAS scores increasing by 16.10 and 11.85%-points for UDante and Perseus, respectively (Gamba and Zeman, 2023a).Additionally, the voting system for morphological features (FEATS) brings improvements, especially for the smaller Latin treebanks: Perseus 3.15% and CIRCSE 2.47%-points.Tagging the CIRCSE set with our custom model using the LASLA model improves POS 6.71 and FEATS 11.04%-points compared to our best-performing UD PROIEL model.Our results show that larger datasets and ensemble predictions can significantly improve performance. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
Improving Latin Dependency Parsing by Combining Treebanks and Predictions
Popis výsledku anglicky
This paper introduces new models designed to improve the morpho-syntactic parsing of the five largest Latin treebanks in the Universal Dependencies (UD) framework.First, using two state-of-the-art parsers, Trankit and Stanza, along with our custom UD tagger, we train new models on the five treebanks both individually and by combining them into novel merged datasets.We also test the models on the CIRCSE test set.In an additional experiment, we evaluate whether this set can be accurately tagged using the novel LASLA corpus (https://github.com/CIRCSE/LASLA).Second, we aim to improve the results by combining the predictions of different models through an atomic morphological feature voting system.The results of our two main experiments demonstrate significant improvements, particularly for the smaller treebanks, with LAS scores increasing by 16.10 and 11.85%-points for UDante and Perseus, respectively (Gamba and Zeman, 2023a).Additionally, the voting system for morphological features (FEATS) brings improvements, especially for the smaller Latin treebanks: Perseus 3.15% and CIRCSE 2.47%-points.Tagging the CIRCSE set with our custom model using the LASLA model improves POS 6.71 and FEATS 11.04%-points compared to our best-performing UD PROIEL model.Our results show that larger datasets and ensemble predictions can significantly improve performance. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
NLP4DH - Int. Conf. Nat. Lang. Process. Digit. Humanit., Proc. Conf.
ISBN
979-889176181-0
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
216-228
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Miami
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—