Integration of cognitive tasks into artificial general intelligence test for large models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AIL6BFLWL" target="_blank" >RIV/00216208:11320/25:IL6BFLWL - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189562652&doi=10.1016%2fj.isci.2024.109550&partnerID=40&md5=00b8ba47af46f5d0d98a2eba1985bcfc" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189562652&doi=10.1016%2fj.isci.2024.109550&partnerID=40&md5=00b8ba47af46f5d0d98a2eba1985bcfc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.isci.2024.109550" target="_blank" >10.1016/j.isci.2024.109550</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integration of cognitive tasks into artificial general intelligence test for large models
Popis výsledku v původním jazyce
During the evolution of large models, performance evaluation is necessary for assessing their capabilities. However, current model evaluations mainly rely on specific tasks and datasets, lacking a united framework for assessing the multidimensional intelligence of large models. In this perspective, we advocate for a comprehensive framework of cognitive science-inspired artificial general intelligence (AGI) tests, including crystallized, fluid, social, and embodied intelligence. The AGI tests consist of well-designed cognitive tests adopted from human intelligence tests, and then naturally encapsulates into an immersive virtual community. We propose increasing the complexity of AGI testing tasks commensurate with advancements in large models and emphasizing the necessity for the interpretation of test results to avoid false negatives and false positives. We believe that cognitive science-inspired AGI tests will effectively guide the targeted improvement of large models in specific dimensions of intelligence and accelerate the integration of large models into human society. © 2024 The Author(s)
Název v anglickém jazyce
Integration of cognitive tasks into artificial general intelligence test for large models
Popis výsledku anglicky
During the evolution of large models, performance evaluation is necessary for assessing their capabilities. However, current model evaluations mainly rely on specific tasks and datasets, lacking a united framework for assessing the multidimensional intelligence of large models. In this perspective, we advocate for a comprehensive framework of cognitive science-inspired artificial general intelligence (AGI) tests, including crystallized, fluid, social, and embodied intelligence. The AGI tests consist of well-designed cognitive tests adopted from human intelligence tests, and then naturally encapsulates into an immersive virtual community. We propose increasing the complexity of AGI testing tasks commensurate with advancements in large models and emphasizing the necessity for the interpretation of test results to avoid false negatives and false positives. We believe that cognitive science-inspired AGI tests will effectively guide the targeted improvement of large models in specific dimensions of intelligence and accelerate the integration of large models into human society. © 2024 The Author(s)
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
iScience
ISSN
2589-0042
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85189562652