Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Findings of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AILHQEMR5" target="_blank" >RIV/00216208:11320/25:ILHQEMR5 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189645516&partnerID=40&md5=6c6cce0de13a8e1236cd42e3f9ab9ca3" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189645516&partnerID=40&md5=6c6cce0de13a8e1236cd42e3f9ab9ca3</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Findings of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages

  • Popis výsledku v původním jazyce

    This paper discusses the organisation and findings of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages. The shared task was split into the constrained and unconstrained tracks and involved solving either three or five problems for 12+ ancient and historical languages belonging to four language families and making use of six different scripts. There were 14 registrations in total, of which three teams participated in each track. Out of these six submissions, two systems were successful in the constrained setting and another two in the unconstrained setting, and four system description papers were submitted by different teams. The best average results for POS-tagging, lemmatisation and morphological feature prediction were 96.09%, 94.88% and 96.68% respectively. In the mask filling problem, the winning team could not achieve a higher average score across all 16 languages than 5.95% at the word level, which demonstrates the difficulty of this problem. At the character level, the best average result over 16 languages was 55.62%. © 2024 Association for Computational Linguistics.

  • Název v anglickém jazyce

    Findings of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages

  • Popis výsledku anglicky

    This paper discusses the organisation and findings of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages. The shared task was split into the constrained and unconstrained tracks and involved solving either three or five problems for 12+ ancient and historical languages belonging to four language families and making use of six different scripts. There were 14 registrations in total, of which three teams participated in each track. Out of these six submissions, two systems were successful in the constrained setting and another two in the unconstrained setting, and four system description papers were submitted by different teams. The best average results for POS-tagging, lemmatisation and morphological feature prediction were 96.09%, 94.88% and 96.68% respectively. In the mask filling problem, the winning team could not achieve a higher average score across all 16 languages than 5.95% at the word level, which demonstrates the difficulty of this problem. At the character level, the best average result over 16 languages was 55.62%. © 2024 Association for Computational Linguistics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    SIGTYP - Workshop Res. Comput. Linguist. Typology Multiling. NLP, Proc. Workshop

  • ISBN

    979-889176071-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    160-172

  • Název nakladatele

    Association for Computational Linguistics (ACL)

  • Místo vydání

  • Místo konání akce

    St. Julian's, Malta

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku