Findings of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AILHQEMR5" target="_blank" >RIV/00216208:11320/25:ILHQEMR5 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189645516&partnerID=40&md5=6c6cce0de13a8e1236cd42e3f9ab9ca3" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189645516&partnerID=40&md5=6c6cce0de13a8e1236cd42e3f9ab9ca3</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Findings of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages
Popis výsledku v původním jazyce
This paper discusses the organisation and findings of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages. The shared task was split into the constrained and unconstrained tracks and involved solving either three or five problems for 12+ ancient and historical languages belonging to four language families and making use of six different scripts. There were 14 registrations in total, of which three teams participated in each track. Out of these six submissions, two systems were successful in the constrained setting and another two in the unconstrained setting, and four system description papers were submitted by different teams. The best average results for POS-tagging, lemmatisation and morphological feature prediction were 96.09%, 94.88% and 96.68% respectively. In the mask filling problem, the winning team could not achieve a higher average score across all 16 languages than 5.95% at the word level, which demonstrates the difficulty of this problem. At the character level, the best average result over 16 languages was 55.62%. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
Findings of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages
Popis výsledku anglicky
This paper discusses the organisation and findings of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages. The shared task was split into the constrained and unconstrained tracks and involved solving either three or five problems for 12+ ancient and historical languages belonging to four language families and making use of six different scripts. There were 14 registrations in total, of which three teams participated in each track. Out of these six submissions, two systems were successful in the constrained setting and another two in the unconstrained setting, and four system description papers were submitted by different teams. The best average results for POS-tagging, lemmatisation and morphological feature prediction were 96.09%, 94.88% and 96.68% respectively. In the mask filling problem, the winning team could not achieve a higher average score across all 16 languages than 5.95% at the word level, which demonstrates the difficulty of this problem. At the character level, the best average result over 16 languages was 55.62%. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
SIGTYP - Workshop Res. Comput. Linguist. Typology Multiling. NLP, Proc. Workshop
ISBN
979-889176071-4
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
160-172
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
St. Julian's, Malta
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—