TRANSLICO: A Contrastive Learning Framework to Address the Script Barrier in Multilingual Pretrained Language Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AJDZ2F383" target="_blank" >RIV/00216208:11320/25:JDZ2F383 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204460367&partnerID=40&md5=7b76eb9093384688f8014917ce561509" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204460367&partnerID=40&md5=7b76eb9093384688f8014917ce561509</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TRANSLICO: A Contrastive Learning Framework to Address the Script Barrier in Multilingual Pretrained Language Models
Popis výsledku v původním jazyce
The world's more than 7000 languages are written in at least 293 scripts. Due to various reasons, many closely related languages use different scripts, which poses a difficulty for multilingual pretrained language models (mPLMs) in learning crosslingual knowledge through lexical overlap. As a consequence, mPLMs are faced with a script barrier: representations from different scripts are located in different subspaces, which can result in crosslingual transfer involving languages of different scripts performing suboptimally. To address this problem, we propose TRANSLICO, a framework that optimizes the Transliteration Contrastive Modeling (TCM) objective to fine-tune an mPLM by contrasting sentences in its training data and their transliterations in a unified script (in our case Latin), which enhances uniformity in the representation space for different scripts. Using Glot500-m (ImaniGooghari et al., 2023), an mPLM pretrained on over 500 languages, as our source model, we fine-tune it on a small portion (5%) of its training data, and refer to the resulting model as FURINA. We show that FURINA not only better aligns representations from distinct scripts but also outperforms the original Glot500-m on various zero-shot crosslingual transfer tasks. Additionally, we achieve consistent improvement in a case study on the Indic group where the languages exhibit areal features but use different scripts. We make our code and models publicly available. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
TRANSLICO: A Contrastive Learning Framework to Address the Script Barrier in Multilingual Pretrained Language Models
Popis výsledku anglicky
The world's more than 7000 languages are written in at least 293 scripts. Due to various reasons, many closely related languages use different scripts, which poses a difficulty for multilingual pretrained language models (mPLMs) in learning crosslingual knowledge through lexical overlap. As a consequence, mPLMs are faced with a script barrier: representations from different scripts are located in different subspaces, which can result in crosslingual transfer involving languages of different scripts performing suboptimally. To address this problem, we propose TRANSLICO, a framework that optimizes the Transliteration Contrastive Modeling (TCM) objective to fine-tune an mPLM by contrasting sentences in its training data and their transliterations in a unified script (in our case Latin), which enhances uniformity in the representation space for different scripts. Using Glot500-m (ImaniGooghari et al., 2023), an mPLM pretrained on over 500 languages, as our source model, we fine-tune it on a small portion (5%) of its training data, and refer to the resulting model as FURINA. We show that FURINA not only better aligns representations from distinct scripts but also outperforms the original Glot500-m on various zero-shot crosslingual transfer tasks. Additionally, we achieve consistent improvement in a case study on the Indic group where the languages exhibit areal features but use different scripts. We make our code and models publicly available. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. Annu. Meet. Assoc. Comput Linguist.
ISBN
979-889176094-3
ISSN
0736-587X
e-ISSN
—
Počet stran výsledku
24
Strana od-do
2476-2499
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Bangkok
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—