BERT2D: Two Dimensional Positional Embeddings for Efficient Turkish NLP
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AJRLQM3B3" target="_blank" >RIV/00216208:11320/25:JRLQM3B3 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194891514&doi=10.1109%2fACCESS.2024.3407983&partnerID=40&md5=e13a78472733dd2230be25d4fbf75df7" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194891514&doi=10.1109%2fACCESS.2024.3407983&partnerID=40&md5=e13a78472733dd2230be25d4fbf75df7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3407983" target="_blank" >10.1109/ACCESS.2024.3407983</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
BERT2D: Two Dimensional Positional Embeddings for Efficient Turkish NLP
Popis výsledku v původním jazyce
This study addresses the challenge of improving the downstream performance of pretrained language models for morphologically rich languages, with a focus on Turkish. Traditional BERT models use one-dimensional absolute positional embeddings, which, while effective, have limitations when dealing with complex languages. We propose BERT2D, which is a novel BERT-based model that contributes to positional embedding systems. This approach introduces a dual embedding system that targets all the words and their subwords. Remarkably, this modification, coupled with whole word masking, resulted in a significant increase in performance despite a negligible increase in the parameters. Our experiments showed that BERT2D consistently outperformed the leading Turkish-focused BERT model, BERTurk, in terms of various performance metrics in text classification, token classification, and question-answering downstream tasks. For a fair comparison, we pretrained our BERT2D language model on the same dataset as that of BERTurk. The results demonstrate that two-dimensional positional embeddings can significantly improve the performance of encoder-only models in Turkish and other morphologically rich languages, suggesting a promising direction for future research in natural language processing. © 2013 IEEE.
Název v anglickém jazyce
BERT2D: Two Dimensional Positional Embeddings for Efficient Turkish NLP
Popis výsledku anglicky
This study addresses the challenge of improving the downstream performance of pretrained language models for morphologically rich languages, with a focus on Turkish. Traditional BERT models use one-dimensional absolute positional embeddings, which, while effective, have limitations when dealing with complex languages. We propose BERT2D, which is a novel BERT-based model that contributes to positional embedding systems. This approach introduces a dual embedding system that targets all the words and their subwords. Remarkably, this modification, coupled with whole word masking, resulted in a significant increase in performance despite a negligible increase in the parameters. Our experiments showed that BERT2D consistently outperformed the leading Turkish-focused BERT model, BERTurk, in terms of various performance metrics in text classification, token classification, and question-answering downstream tasks. For a fair comparison, we pretrained our BERT2D language model on the same dataset as that of BERTurk. The results demonstrate that two-dimensional positional embeddings can significantly improve the performance of encoder-only models in Turkish and other morphologically rich languages, suggesting a promising direction for future research in natural language processing. © 2013 IEEE.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
77429-77441
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85194891514