Multimodal Machine Translation Approaches for Indian Languages: A Comprehensive Survey
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AKVAMLCHI" target="_blank" >RIV/00216208:11320/25:KVAMLCHI - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195373878&doi=10.3897%2fjucs.109227&partnerID=40&md5=b97bbc8ac7d695af8ecf11125324cc72" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195373878&doi=10.3897%2fjucs.109227&partnerID=40&md5=b97bbc8ac7d695af8ecf11125324cc72</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3897/jucs.109227" target="_blank" >10.3897/jucs.109227</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multimodal Machine Translation Approaches for Indian Languages: A Comprehensive Survey
Popis výsledku v původním jazyce
Multimodal machine translation (MMT) is a challenging task in the linguistically diverse Indian landscape. Machine translation refers to the task of automatically converting content from one language to another without human involvement. Within the realm of natural language processing, a significant challenge arises from the inherent ambiguity present in human language. Translation ambiguity is a cross-lingual phenomenon that can manifest itself for various reasons, including lexical ambiguity, the occasional need to impute missing words, the presence of gender ambiguity, and word-sense ambiguities. These factors can lead to a decrease in translation accuracy. The integration of multiple modalities, such as images, videos, and audio, in addition to text, plays a pivotal role in improving the robustness and precision of translation systems. Over the past five years, extensive research has been dedicated to incorporating secondary modalities alongside text to improve language translation and comprehension. In this comprehensive study, our objective was to identify and explore promising MMT approaches, available corpora, evaluation metrics, research challenges, and the future direction of research specifically for Indian languages. We evaluated 81 papers, including MMT models, MMT dataset in Indian languages, survey on MMT approach, and the effects of multiple modalities in machine translation. The performance of the different proposed approaches has also been briefly analyzed on the basis of the claimed results and comparative evaluations. Finally, the challenges associated with the MMT task for India and some possible directions for future research in this domain are highlighted. © 2024, IICM. All rights reserved.
Název v anglickém jazyce
Multimodal Machine Translation Approaches for Indian Languages: A Comprehensive Survey
Popis výsledku anglicky
Multimodal machine translation (MMT) is a challenging task in the linguistically diverse Indian landscape. Machine translation refers to the task of automatically converting content from one language to another without human involvement. Within the realm of natural language processing, a significant challenge arises from the inherent ambiguity present in human language. Translation ambiguity is a cross-lingual phenomenon that can manifest itself for various reasons, including lexical ambiguity, the occasional need to impute missing words, the presence of gender ambiguity, and word-sense ambiguities. These factors can lead to a decrease in translation accuracy. The integration of multiple modalities, such as images, videos, and audio, in addition to text, plays a pivotal role in improving the robustness and precision of translation systems. Over the past five years, extensive research has been dedicated to incorporating secondary modalities alongside text to improve language translation and comprehension. In this comprehensive study, our objective was to identify and explore promising MMT approaches, available corpora, evaluation metrics, research challenges, and the future direction of research specifically for Indian languages. We evaluated 81 papers, including MMT models, MMT dataset in Indian languages, survey on MMT approach, and the effects of multiple modalities in machine translation. The performance of the different proposed approaches has also been briefly analyzed on the basis of the claimed results and comparative evaluations. Finally, the challenges associated with the MMT task for India and some possible directions for future research in this domain are highlighted. © 2024, IICM. All rights reserved.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Universal Computer Science
ISSN
0948-695X
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
694-717
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85195373878