Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multimodal Machine Translation Approaches for Indian Languages: A Comprehensive Survey

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AKVAMLCHI" target="_blank" >RIV/00216208:11320/25:KVAMLCHI - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195373878&doi=10.3897%2fjucs.109227&partnerID=40&md5=b97bbc8ac7d695af8ecf11125324cc72" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195373878&doi=10.3897%2fjucs.109227&partnerID=40&md5=b97bbc8ac7d695af8ecf11125324cc72</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3897/jucs.109227" target="_blank" >10.3897/jucs.109227</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multimodal Machine Translation Approaches for Indian Languages: A Comprehensive Survey

  • Popis výsledku v původním jazyce

    Multimodal machine translation (MMT) is a challenging task in the linguistically diverse Indian landscape. Machine translation refers to the task of automatically converting content from one language to another without human involvement. Within the realm of natural language processing, a significant challenge arises from the inherent ambiguity present in human language. Translation ambiguity is a cross-lingual phenomenon that can manifest itself for various reasons, including lexical ambiguity, the occasional need to impute missing words, the presence of gender ambiguity, and word-sense ambiguities. These factors can lead to a decrease in translation accuracy. The integration of multiple modalities, such as images, videos, and audio, in addition to text, plays a pivotal role in improving the robustness and precision of translation systems. Over the past five years, extensive research has been dedicated to incorporating secondary modalities alongside text to improve language translation and comprehension. In this comprehensive study, our objective was to identify and explore promising MMT approaches, available corpora, evaluation metrics, research challenges, and the future direction of research specifically for Indian languages. We evaluated 81 papers, including MMT models, MMT dataset in Indian languages, survey on MMT approach, and the effects of multiple modalities in machine translation. The performance of the different proposed approaches has also been briefly analyzed on the basis of the claimed results and comparative evaluations. Finally, the challenges associated with the MMT task for India and some possible directions for future research in this domain are highlighted. © 2024, IICM. All rights reserved.

  • Název v anglickém jazyce

    Multimodal Machine Translation Approaches for Indian Languages: A Comprehensive Survey

  • Popis výsledku anglicky

    Multimodal machine translation (MMT) is a challenging task in the linguistically diverse Indian landscape. Machine translation refers to the task of automatically converting content from one language to another without human involvement. Within the realm of natural language processing, a significant challenge arises from the inherent ambiguity present in human language. Translation ambiguity is a cross-lingual phenomenon that can manifest itself for various reasons, including lexical ambiguity, the occasional need to impute missing words, the presence of gender ambiguity, and word-sense ambiguities. These factors can lead to a decrease in translation accuracy. The integration of multiple modalities, such as images, videos, and audio, in addition to text, plays a pivotal role in improving the robustness and precision of translation systems. Over the past five years, extensive research has been dedicated to incorporating secondary modalities alongside text to improve language translation and comprehension. In this comprehensive study, our objective was to identify and explore promising MMT approaches, available corpora, evaluation metrics, research challenges, and the future direction of research specifically for Indian languages. We evaluated 81 papers, including MMT models, MMT dataset in Indian languages, survey on MMT approach, and the effects of multiple modalities in machine translation. The performance of the different proposed approaches has also been briefly analyzed on the basis of the claimed results and comparative evaluations. Finally, the challenges associated with the MMT task for India and some possible directions for future research in this domain are highlighted. © 2024, IICM. All rights reserved.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Universal Computer Science

  • ISSN

    0948-695X

  • e-ISSN

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

    694-717

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85195373878