Improving Bengali and Hindi Large Language Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AMKDEC429" target="_blank" >RIV/00216208:11320/25:MKDEC429 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195934786&partnerID=40&md5=2c4071b1929b49b2e2f118841f834eca" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195934786&partnerID=40&md5=2c4071b1929b49b2e2f118841f834eca</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Bengali and Hindi Large Language Models
Popis výsledku v původním jazyce
Despite being widely spoken worldwide, Bengali and Hindi are low-resource languages. The state-of-the-art in modeling such languages uses BERT and the Wordpiece tokenizer. We observed that the Wordpiece tokenizer often breaks words into meaningless tokens, failing to separate roots from affixes. Moreover, Wordpiece does not take into account fine-grained character-level information. We hypothesize that modeling fine-grained character-level information or interactions between roots and affixes helps with modeling highly inflected and morphologically complex languages such as Bengali and Hindi. We used BERT with two different tokenizers - a Unigram tokenizer and a character-level tokenizer and observed better performance. Then, we pretrained four language models accordingly - Bengali Unigram BERT, Hindi Unigram BERT, Bengali Character BERT, and Hindi Character BERT, and evaluated them for masked token detection, both in correct and erroneous settings, across many NLU tasks. We provide experimental evidence that Unigram and character-level tokenizers lead to better pretrained models for Bengali and Hindi, outperforming the previous state-of-the-art and BERT with Wordpiece vocabulary. We conduct the first study investigating the efficacy of different tokenization methods in modeling Bengali and Hindi. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Název v anglickém jazyce
Improving Bengali and Hindi Large Language Models
Popis výsledku anglicky
Despite being widely spoken worldwide, Bengali and Hindi are low-resource languages. The state-of-the-art in modeling such languages uses BERT and the Wordpiece tokenizer. We observed that the Wordpiece tokenizer often breaks words into meaningless tokens, failing to separate roots from affixes. Moreover, Wordpiece does not take into account fine-grained character-level information. We hypothesize that modeling fine-grained character-level information or interactions between roots and affixes helps with modeling highly inflected and morphologically complex languages such as Bengali and Hindi. We used BERT with two different tokenizers - a Unigram tokenizer and a character-level tokenizer and observed better performance. Then, we pretrained four language models accordingly - Bengali Unigram BERT, Hindi Unigram BERT, Bengali Character BERT, and Hindi Character BERT, and evaluated them for masked token detection, both in correct and erroneous settings, across many NLU tasks. We provide experimental evidence that Unigram and character-level tokenizers lead to better pretrained models for Bengali and Hindi, outperforming the previous state-of-the-art and BERT with Wordpiece vocabulary. We conduct the first study investigating the efficacy of different tokenization methods in modeling Bengali and Hindi. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
8719-8731
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Torino, Italia
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—