The MorPhEMe Machine: An Addressable Neural Memory for Learning Knowledge-Regularized Deep Contextualized Chinese Embedding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3APVVK8D38" target="_blank" >RIV/00216208:11320/25:PVVK8D38 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187261096&doi=10.1109%2fTASLP.2024.3364610&partnerID=40&md5=80e95f1bb7f89a2d456950b15b6c8fb1" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187261096&doi=10.1109%2fTASLP.2024.3364610&partnerID=40&md5=80e95f1bb7f89a2d456950b15b6c8fb1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TASLP.2024.3364610" target="_blank" >10.1109/TASLP.2024.3364610</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The MorPhEMe Machine: An Addressable Neural Memory for Learning Knowledge-Regularized Deep Contextualized Chinese Embedding
Popis výsledku v původním jazyce
Deep contextualized embeddings, as learned by large pre-training models, have proven highly effective in various downstream natural language processing tasks. However, the embedding space in these large models lacks explicit regularization, leading to underfitting and substantial costs during large-scale training on huge corpora. In this paper, we present a novel approach to learning deep contextualized embeddings, introducing linguistic knowledge regularization. Specifically, our proposed model, MorPhEMe (Morphology and Phonology Embedding Memory), features an external addressable memory with two additional addressable memories for storing morphology and phonology knowledge. MorPhEMe can be seamlessly stacked into a deep architecture. Notably different from existing pre-training models, MorPhEMe boasts two distinctive features: i) compositional encoding and decompositional decoding facilitated by a dynamic addressing mechanism; and ii) explicit memory embedding regularization through cross-layer memory sharing. Theoretical analysis suggests that the inclusion of morphology and phonology enables MorPhEMe to reduce the modeling complexity of natural language sequences. We evaluate MorPhEMe across a diverse set of Chinese natural language processing tasks, including language modeling, word similarity computation, word analogy reasoning, relation extraction, and machine reading comprehension. Experimental results demonstrate that MorPhEMe, in contrast to state-of-the-art models, achieves remarkable improvements with fewer parameters and rapid convergence. © 2014 IEEE.
Název v anglickém jazyce
The MorPhEMe Machine: An Addressable Neural Memory for Learning Knowledge-Regularized Deep Contextualized Chinese Embedding
Popis výsledku anglicky
Deep contextualized embeddings, as learned by large pre-training models, have proven highly effective in various downstream natural language processing tasks. However, the embedding space in these large models lacks explicit regularization, leading to underfitting and substantial costs during large-scale training on huge corpora. In this paper, we present a novel approach to learning deep contextualized embeddings, introducing linguistic knowledge regularization. Specifically, our proposed model, MorPhEMe (Morphology and Phonology Embedding Memory), features an external addressable memory with two additional addressable memories for storing morphology and phonology knowledge. MorPhEMe can be seamlessly stacked into a deep architecture. Notably different from existing pre-training models, MorPhEMe boasts two distinctive features: i) compositional encoding and decompositional decoding facilitated by a dynamic addressing mechanism; and ii) explicit memory embedding regularization through cross-layer memory sharing. Theoretical analysis suggests that the inclusion of morphology and phonology enables MorPhEMe to reduce the modeling complexity of natural language sequences. We evaluate MorPhEMe across a diverse set of Chinese natural language processing tasks, including language modeling, word similarity computation, word analogy reasoning, relation extraction, and machine reading comprehension. Experimental results demonstrate that MorPhEMe, in contrast to state-of-the-art models, achieves remarkable improvements with fewer parameters and rapid convergence. © 2014 IEEE.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE/ACM Transactions on Audio Speech and Language Processing
ISSN
2329-9290
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1673-1686
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85187261096