Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The MorPhEMe Machine: An Addressable Neural Memory for Learning Knowledge-Regularized Deep Contextualized Chinese Embedding

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3APVVK8D38" target="_blank" >RIV/00216208:11320/25:PVVK8D38 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187261096&doi=10.1109%2fTASLP.2024.3364610&partnerID=40&md5=80e95f1bb7f89a2d456950b15b6c8fb1" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187261096&doi=10.1109%2fTASLP.2024.3364610&partnerID=40&md5=80e95f1bb7f89a2d456950b15b6c8fb1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TASLP.2024.3364610" target="_blank" >10.1109/TASLP.2024.3364610</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The MorPhEMe Machine: An Addressable Neural Memory for Learning Knowledge-Regularized Deep Contextualized Chinese Embedding

  • Popis výsledku v původním jazyce

    Deep contextualized embeddings, as learned by large pre-training models, have proven highly effective in various downstream natural language processing tasks. However, the embedding space in these large models lacks explicit regularization, leading to underfitting and substantial costs during large-scale training on huge corpora. In this paper, we present a novel approach to learning deep contextualized embeddings, introducing linguistic knowledge regularization. Specifically, our proposed model, MorPhEMe (Morphology and Phonology Embedding Memory), features an external addressable memory with two additional addressable memories for storing morphology and phonology knowledge. MorPhEMe can be seamlessly stacked into a deep architecture. Notably different from existing pre-training models, MorPhEMe boasts two distinctive features: i) compositional encoding and decompositional decoding facilitated by a dynamic addressing mechanism; and ii) explicit memory embedding regularization through cross-layer memory sharing. Theoretical analysis suggests that the inclusion of morphology and phonology enables MorPhEMe to reduce the modeling complexity of natural language sequences. We evaluate MorPhEMe across a diverse set of Chinese natural language processing tasks, including language modeling, word similarity computation, word analogy reasoning, relation extraction, and machine reading comprehension. Experimental results demonstrate that MorPhEMe, in contrast to state-of-the-art models, achieves remarkable improvements with fewer parameters and rapid convergence. © 2014 IEEE.

  • Název v anglickém jazyce

    The MorPhEMe Machine: An Addressable Neural Memory for Learning Knowledge-Regularized Deep Contextualized Chinese Embedding

  • Popis výsledku anglicky

    Deep contextualized embeddings, as learned by large pre-training models, have proven highly effective in various downstream natural language processing tasks. However, the embedding space in these large models lacks explicit regularization, leading to underfitting and substantial costs during large-scale training on huge corpora. In this paper, we present a novel approach to learning deep contextualized embeddings, introducing linguistic knowledge regularization. Specifically, our proposed model, MorPhEMe (Morphology and Phonology Embedding Memory), features an external addressable memory with two additional addressable memories for storing morphology and phonology knowledge. MorPhEMe can be seamlessly stacked into a deep architecture. Notably different from existing pre-training models, MorPhEMe boasts two distinctive features: i) compositional encoding and decompositional decoding facilitated by a dynamic addressing mechanism; and ii) explicit memory embedding regularization through cross-layer memory sharing. Theoretical analysis suggests that the inclusion of morphology and phonology enables MorPhEMe to reduce the modeling complexity of natural language sequences. We evaluate MorPhEMe across a diverse set of Chinese natural language processing tasks, including language modeling, word similarity computation, word analogy reasoning, relation extraction, and machine reading comprehension. Experimental results demonstrate that MorPhEMe, in contrast to state-of-the-art models, achieves remarkable improvements with fewer parameters and rapid convergence. © 2014 IEEE.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE/ACM Transactions on Audio Speech and Language Processing

  • ISSN

    2329-9290

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    1673-1686

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85187261096