Synthetic-Error Augmented Parsing of Swedish as a Second Language: Experiments with Word Order
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AQ45IXFCI" target="_blank" >RIV/00216208:11320/25:Q45IXFCI - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195172772&partnerID=40&md5=a144a8a927993680fe5bd6490c7760cf" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195172772&partnerID=40&md5=a144a8a927993680fe5bd6490c7760cf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Synthetic-Error Augmented Parsing of Swedish as a Second Language: Experiments with Word Order
Popis výsledku v původním jazyce
Ungrammatical text poses significant challenges for off-the-shelf dependency parsers. In this paper, we explore the effectiveness of using synthetic data to improve performance on essays written by learners of Swedish as a second language. Due to their relevance and ease of annotation, we restrict our initial experiments to word order errors. To do that, we build a corrupted version of the standard Swedish Universal Dependencies (UD) treebank Talbanken, mimicking the error patterns and frequency distributions observed in the Swedish Learner Language (SweLL) corpus. We then use the MaChAmp (Massive Choice, Ample tasks) toolkit to train an array of BERT-based dependency parsers, fine-tuning on different combinations of original and corrupted data. We evaluate the resulting models not only on their respective test sets but also, most importantly, on a smaller collection of sentence-correction pairs derived from SweLL. Results show small but significant performance improvements on the target domain, with minimal decline on normative data. © European Language Resources Association: CC BY-NC 4.0.
Název v anglickém jazyce
Synthetic-Error Augmented Parsing of Swedish as a Second Language: Experiments with Word Order
Popis výsledku anglicky
Ungrammatical text poses significant challenges for off-the-shelf dependency parsers. In this paper, we explore the effectiveness of using synthetic data to improve performance on essays written by learners of Swedish as a second language. Due to their relevance and ease of annotation, we restrict our initial experiments to word order errors. To do that, we build a corrupted version of the standard Swedish Universal Dependencies (UD) treebank Talbanken, mimicking the error patterns and frequency distributions observed in the Swedish Learner Language (SweLL) corpus. We then use the MaChAmp (Massive Choice, Ample tasks) toolkit to train an array of BERT-based dependency parsers, fine-tuning on different combinations of original and corrupted data. We evaluate the resulting models not only on their respective test sets but also, most importantly, on a smaller collection of sentence-correction pairs derived from SweLL. Results show small but significant performance improvements on the target domain, with minimal decline on normative data. © European Language Resources Association: CC BY-NC 4.0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Jt. Workshop Multiword Expressions Univers. Depend., MWE-UD LREC-COLING - Workshop Proc.
ISBN
978-249381420-3
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
43-49
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Torino, Italia
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—