Wording Matters: The Effect of Linguistic Characteristics and Political Ideology on Resharing of COVID-19 Vaccine Tweets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AQ4S3PRNZ" target="_blank" >RIV/00216208:11320/25:Q4S3PRNZ - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205354701&doi=10.1145%2f3637876&partnerID=40&md5=ea14567cacf7ac177e97b026dc2d8f0c" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205354701&doi=10.1145%2f3637876&partnerID=40&md5=ea14567cacf7ac177e97b026dc2d8f0c</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3637876" target="_blank" >10.1145/3637876</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wording Matters: The Effect of Linguistic Characteristics and Political Ideology on Resharing of COVID-19 Vaccine Tweets
Popis výsledku v původním jazyce
Social media platforms are frequently used to share information and opinions around vaccinations. The more often a message is reshared, the wider the reach of the message and potential influence it may have on shaping people's opinions to get vaccinated or not. We used a negative binomial regression to investigate whether a message's linguistic characteristics (degree of concreteness, emotional arousal, and sentiment) and user characteristics (political ideology and number of followers) may influence users' decisions to reshare tweets related to the COVID-19 vaccine. We analyzed US English-language tweets related to the COVID-19 vaccine between May 2020 and October 2021 (N = 236,054).Tweets with positive and high-Arousal words were more often retweeted than negative, low-Arousal tweets. Tweets with abstract words were more often retweeted than tweets with concrete words. In addition, while Liberal users were more likely to have tweets with a positive sentiment reshared. Conservative users were more likely to have tweets with a negative sentiment reshared. Our results can inform public health messaging on how to best phrase vaccine information to impact engagement and information resharing, and potentially persuade a wider set of people to get vaccinated. © 2024 Copyright held by the owner/author(s).
Název v anglickém jazyce
Wording Matters: The Effect of Linguistic Characteristics and Political Ideology on Resharing of COVID-19 Vaccine Tweets
Popis výsledku anglicky
Social media platforms are frequently used to share information and opinions around vaccinations. The more often a message is reshared, the wider the reach of the message and potential influence it may have on shaping people's opinions to get vaccinated or not. We used a negative binomial regression to investigate whether a message's linguistic characteristics (degree of concreteness, emotional arousal, and sentiment) and user characteristics (political ideology and number of followers) may influence users' decisions to reshare tweets related to the COVID-19 vaccine. We analyzed US English-language tweets related to the COVID-19 vaccine between May 2020 and October 2021 (N = 236,054).Tweets with positive and high-Arousal words were more often retweeted than negative, low-Arousal tweets. Tweets with abstract words were more often retweeted than tweets with concrete words. In addition, while Liberal users were more likely to have tweets with a positive sentiment reshared. Conservative users were more likely to have tweets with a negative sentiment reshared. Our results can inform public health messaging on how to best phrase vaccine information to impact engagement and information resharing, and potentially persuade a wider set of people to get vaccinated. © 2024 Copyright held by the owner/author(s).
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Computer-Human Interaction
ISSN
1073-0516
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85205354701