Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Association of metastatic pattern in breast cancer with tumor and patient-specific factors: a nationwide autopsy study using artificial intelligence

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AQYWN2RFW" target="_blank" >RIV/00216208:11320/25:QYWN2RFW - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180442264&doi=10.1007%2fs12282-023-01534-6&partnerID=40&md5=d8295ec9da5436d2c2bceee3654d4386" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180442264&doi=10.1007%2fs12282-023-01534-6&partnerID=40&md5=d8295ec9da5436d2c2bceee3654d4386</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s12282-023-01534-6" target="_blank" >10.1007/s12282-023-01534-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Association of metastatic pattern in breast cancer with tumor and patient-specific factors: a nationwide autopsy study using artificial intelligence

  • Popis výsledku v původním jazyce

    Background: Metastatic spread is characterized by considerable heterogeneity in most cancers. With increasing treatment options for patients with metastatic disease, there is a need for insight into metastatic patterns of spread in breast cancer patients using large-scale studies. Methods: Records of 2622 metastatic breast cancer patients who underwent autopsy (1974–2010) were retrieved from the nationwide Dutch pathology databank (PALGA). Natural language processing (NLP) and manual information extraction (IE) were applied to identify the tumors, patient characteristics, and locations of metastases. Results: The accuracy (0.90) and recall (0.94) of the NLP model outperformed manual IE (on 132 randomly selected patients). Adenocarcinoma no special type more frequently metastasizes to the lung (55.7%) and liver (51.8%), whereas, invasive lobular carcinoma mostly spread to the bone (54.4%) and liver (43.8%), respectively. Patients with tumor grade III had a higher chance of developing bone metastases (61.6%). In a subgroup of patients, we found that ER+/HER2+ patients were more likely to metastasize to the liver and bone, compared to ER−/HER2+ patients. Conclusion: This is the first large-scale study that demonstrates that artificial intelligence methods are efficient for IE from Dutch databanks. Different histological subtypes show different frequencies and combinations of metastatic sites which may reflect the underlying biology of metastatic breast cancer. © The Author(s), under exclusive licence to The Japanese Breast Cancer Society 2023.

  • Název v anglickém jazyce

    Association of metastatic pattern in breast cancer with tumor and patient-specific factors: a nationwide autopsy study using artificial intelligence

  • Popis výsledku anglicky

    Background: Metastatic spread is characterized by considerable heterogeneity in most cancers. With increasing treatment options for patients with metastatic disease, there is a need for insight into metastatic patterns of spread in breast cancer patients using large-scale studies. Methods: Records of 2622 metastatic breast cancer patients who underwent autopsy (1974–2010) were retrieved from the nationwide Dutch pathology databank (PALGA). Natural language processing (NLP) and manual information extraction (IE) were applied to identify the tumors, patient characteristics, and locations of metastases. Results: The accuracy (0.90) and recall (0.94) of the NLP model outperformed manual IE (on 132 randomly selected patients). Adenocarcinoma no special type more frequently metastasizes to the lung (55.7%) and liver (51.8%), whereas, invasive lobular carcinoma mostly spread to the bone (54.4%) and liver (43.8%), respectively. Patients with tumor grade III had a higher chance of developing bone metastases (61.6%). In a subgroup of patients, we found that ER+/HER2+ patients were more likely to metastasize to the liver and bone, compared to ER−/HER2+ patients. Conclusion: This is the first large-scale study that demonstrates that artificial intelligence methods are efficient for IE from Dutch databanks. Different histological subtypes show different frequencies and combinations of metastatic sites which may reflect the underlying biology of metastatic breast cancer. © The Author(s), under exclusive licence to The Japanese Breast Cancer Society 2023.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Breast Cancer

  • ISSN

    1340-6868

  • e-ISSN

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    263-271

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85180442264