Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Incorporating Syntax and Lexical Knowledge to Multilingual Sentiment Classification on Large Language Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ARAABDZCE" target="_blank" >RIV/00216208:11320/25:RAABDZCE - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205305997&partnerID=40&md5=5c611bb12243efaadecc259376a6217f" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205305997&partnerID=40&md5=5c611bb12243efaadecc259376a6217f</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Incorporating Syntax and Lexical Knowledge to Multilingual Sentiment Classification on Large Language Models

  • Popis výsledku v původním jazyce

    This paper exploits a sentiment extractor supported by syntactic and lexical resources to enhance multilingual sentiment classification solved through the generative approach, without retraining LLMs. By adding external information of words and phrases that have positive/negative polarities, the multilingual sentiment classification error was reduced by up to 33 points, and the combination of two approaches performed best especially in high-performing pairs of LLMs and languages. © 2024 Association for Computational Linguistics.

  • Název v anglickém jazyce

    Incorporating Syntax and Lexical Knowledge to Multilingual Sentiment Classification on Large Language Models

  • Popis výsledku anglicky

    This paper exploits a sentiment extractor supported by syntactic and lexical resources to enhance multilingual sentiment classification solved through the generative approach, without retraining LLMs. By adding external information of words and phrases that have positive/negative polarities, the multilingual sentiment classification error was reduced by up to 33 points, and the combination of two approaches performed best especially in high-performing pairs of LLMs and languages. © 2024 Association for Computational Linguistics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proc. Annu. Meet. Assoc. Comput Linguist.

  • ISBN

    979-889176099-8

  • ISSN

    0736-587X

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    4810-4817

  • Název nakladatele

    Association for Computational Linguistics (ACL)

  • Místo vydání

  • Místo konání akce

    Hybrid, Bangkok

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku