Uniform Meaning Representation Parsing as a Pipelined Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ASB6IIP9Y" target="_blank" >RIV/00216208:11320/25:SB6IIP9Y - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204887484&partnerID=40&md5=6ba25a0afeb49f72cb3e2f6b5e4182ae" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204887484&partnerID=40&md5=6ba25a0afeb49f72cb3e2f6b5e4182ae</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Uniform Meaning Representation Parsing as a Pipelined Approach
Popis výsledku v původním jazyce
Uniform Meaning Representation (UMR) is the next phase of semantic formalism following Abstract Meaning Representation (AMR), with added focus on inter-sentential relations allowing the representational scope of UMR to cover a full document. This, in turn, greatly increases the complexity of its parsing task with the additional requirement of capturing document-level linguistic phenomena such as coreference, modal and temporal dependencies. In order to establish a strong baseline despite the small size of recently released UMR v1.0 corpus, we introduce a pipeline model that does not require any training. At the core of our method is a two-track strategy of obtaining UMR's sentence and document graphs separately, with the document-level triples being compiled at the token level and the sentence graph being converted from AMR graphs. By leveraging alignment between AMR and its sentence, we are able to generate the first automatic English UMR parses. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
Uniform Meaning Representation Parsing as a Pipelined Approach
Popis výsledku anglicky
Uniform Meaning Representation (UMR) is the next phase of semantic formalism following Abstract Meaning Representation (AMR), with added focus on inter-sentential relations allowing the representational scope of UMR to cover a full document. This, in turn, greatly increases the complexity of its parsing task with the additional requirement of capturing document-level linguistic phenomena such as coreference, modal and temporal dependencies. In order to establish a strong baseline despite the small size of recently released UMR v1.0 corpus, we introduce a pipeline model that does not require any training. At the core of our method is a two-track strategy of obtaining UMR's sentence and document graphs separately, with the document-level triples being compiled at the token level and the sentence graph being converted from AMR graphs. By leveraging alignment between AMR and its sentence, we are able to generate the first automatic English UMR parses. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
TextGraphs ACL - Proc. TextGraphs-17: Graph-Based Methods Nat. Lang. Process., Annu. Meet. Assoc. Comput. Linguist.
ISBN
979-889176145-2
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
40-52
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Bangkok
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—