Parsing Headed Constituencies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ASFL2XCJZ" target="_blank" >RIV/00216208:11320/25:SFL2XCJZ - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195979038&partnerID=40&md5=422aee470eccdde44da48bac55906645" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195979038&partnerID=40&md5=422aee470eccdde44da48bac55906645</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parsing Headed Constituencies
Popis výsledku v původním jazyce
In the paper, we present a parsing technique that generates headed constituency trees, which combine information typically contained in constituency and dependency trees. We advocate for using such structures for syntactic representation. The parsing method combines prediction of dependency links with prediction of constituency spines in a 'parsing as tagging' approach and outputs a hybrid structure. An interesting feature is that the method can generate constituency trees with discontinuities. The parser is built on top of a BERT model for the given language and uses a specially crafted classifier for predicting dependency links. With suitable training data the method can be applied to arbitrary language; we report evaluation results for Polish and German. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Název v anglickém jazyce
Parsing Headed Constituencies
Popis výsledku anglicky
In the paper, we present a parsing technique that generates headed constituency trees, which combine information typically contained in constituency and dependency trees. We advocate for using such structures for syntactic representation. The parsing method combines prediction of dependency links with prediction of constituency spines in a 'parsing as tagging' approach and outputs a hybrid structure. An interesting feature is that the method can generate constituency trees with discontinuities. The parser is built on top of a BERT model for the given language and uses a specially crafted classifier for predicting dependency links. With suitable training data the method can be applied to arbitrary language; we report evaluation results for Polish and German. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
12633-12643
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Torino, Italia
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—