Parallel texts dataset for Uzbek-Kazakh machine translation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AVMWYREKG" target="_blank" >RIV/00216208:11320/25:VMWYREKG - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/summary/121e71ce-d59a-4953-8092-7d6304231303-fed0d941/relevance/1" target="_blank" >https://www.webofscience.com/wos/woscc/summary/121e71ce-d59a-4953-8092-7d6304231303-fed0d941/relevance/1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dib.2024.110194" target="_blank" >10.1016/j.dib.2024.110194</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parallel texts dataset for Uzbek-Kazakh machine translation
Popis výsledku v původním jazyce
This paper presents a parallel corpus of raw texts between the Uzbek and Kazakh languages as a dataset for machine translation applications, focusing on the data collection process, dataset description, and its potential for reuse. The dataset-building process includes three separate stages, starting with a tiny portion of already available parallel data, then some more compiled from openly available resources like literature books, and web news texts, which were aligned using the sentence alignment method, encompassing a wide range of topics and genres. Finally, the majority of the dataset was taken from a raw text corpus in Uzbek and manually translated into Kazakh by a group of experts who are fluent in both languages. The resulting parallel corpus serves as a valuable resource for researchers and practitioners interested in Kazakh and Uzbek language processing tasks, particularly in the context of neural machine translation, where the presented data can be used for testing the rule-based machine translation models, or it can be used for both training statistical and neural machine translation models as well. The dataset has been made accessible through the widely recognized Hugging Face platform, a repository known for facilitating collaborative efforts and advancing Natural Language
Název v anglickém jazyce
Parallel texts dataset for Uzbek-Kazakh machine translation
Popis výsledku anglicky
This paper presents a parallel corpus of raw texts between the Uzbek and Kazakh languages as a dataset for machine translation applications, focusing on the data collection process, dataset description, and its potential for reuse. The dataset-building process includes three separate stages, starting with a tiny portion of already available parallel data, then some more compiled from openly available resources like literature books, and web news texts, which were aligned using the sentence alignment method, encompassing a wide range of topics and genres. Finally, the majority of the dataset was taken from a raw text corpus in Uzbek and manually translated into Kazakh by a group of experts who are fluent in both languages. The resulting parallel corpus serves as a valuable resource for researchers and practitioners interested in Kazakh and Uzbek language processing tasks, particularly in the context of neural machine translation, where the presented data can be used for testing the rule-based machine translation models, or it can be used for both training statistical and neural machine translation models as well. The dataset has been made accessible through the widely recognized Hugging Face platform, a repository known for facilitating collaborative efforts and advancing Natural Language
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
DATA IN BRIEF
ISSN
2352-3409
e-ISSN
—
Svazek periodika
53
Číslo periodika v rámci svazku
2024-04
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
110194
Strana od-do
1-110194
Kód UT WoS článku
001199307700001
EID výsledku v databázi Scopus
—