Multi-source domain adaptation for dependency parsing via domain-aware feature generation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AX9IFBY4B" target="_blank" >RIV/00216208:11320/25:X9IFBY4B - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202963407&doi=10.1007%2fs13042-024-02306-0&partnerID=40&md5=060923332bbaed26889271294a2824ed" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202963407&doi=10.1007%2fs13042-024-02306-0&partnerID=40&md5=060923332bbaed26889271294a2824ed</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13042-024-02306-0" target="_blank" >10.1007/s13042-024-02306-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-source domain adaptation for dependency parsing via domain-aware feature generation
Popis výsledku v původním jazyce
With deep representation learning advances, supervised dependency parsing has achieved a notable enhancement. However, when the training data is drawn from various predefined out-domains, the parsing performance drops sharply due to the domain distribution shift. The key to addressing this problem is to model the associations and differences between multiple source and target domains. In this work, we propose an innovative domain-aware adversarial and parameter generation network for multi-source cross-domain dependency parsing where a domain-aware parameter generation network is used for identifying domain-specific features and an adversarial network is used for learning domain-invariant ones. Experiments on the benchmark datasets reveal that our model outperforms strong BERT-enhanced baselines by 2 points in the average labeled attachment score (LAS). Detailed analysis of various domain representation strategies shows that our proposed distributed domain embedding can accurately capture domain relevance, which motivates the domain-aware parameter generation network to emphasize useful domain-specific representations and disregard unnecessary or even harmful ones. Additionally, extensive comparison experiments show deeper insights on the contributions of the two components. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Název v anglickém jazyce
Multi-source domain adaptation for dependency parsing via domain-aware feature generation
Popis výsledku anglicky
With deep representation learning advances, supervised dependency parsing has achieved a notable enhancement. However, when the training data is drawn from various predefined out-domains, the parsing performance drops sharply due to the domain distribution shift. The key to addressing this problem is to model the associations and differences between multiple source and target domains. In this work, we propose an innovative domain-aware adversarial and parameter generation network for multi-source cross-domain dependency parsing where a domain-aware parameter generation network is used for identifying domain-specific features and an adversarial network is used for learning domain-invariant ones. Experiments on the benchmark datasets reveal that our model outperforms strong BERT-enhanced baselines by 2 points in the average labeled attachment score (LAS). Detailed analysis of various domain representation strategies shows that our proposed distributed domain embedding can accurately capture domain relevance, which motivates the domain-aware parameter generation network to emphasize useful domain-specific representations and disregard unnecessary or even harmful ones. Additionally, extensive comparison experiments show deeper insights on the contributions of the two components. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Machine Learning and Cybernetics
ISSN
1868-8071
e-ISSN
—
Svazek periodika
2024
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85202963407