Perceptions of Language Technology Failures from South Asian English Speakers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AYAGIGXPG" target="_blank" >RIV/00216208:11320/25:YAGIGXPG - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205303547&partnerID=40&md5=9ec62514228286c3b27b3ec78718716b" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205303547&partnerID=40&md5=9ec62514228286c3b27b3ec78718716b</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Perceptions of Language Technology Failures from South Asian English Speakers
Popis výsledku v původním jazyce
English NLP systems have empirically worse performance for dialects other than Standard American English (SAmE). However, how these discrepancies impact use of language technology by speakers of non-SAmE global Englishes is not well understood. We focus on reducing this gap for South Asian Englishes (SAsE), a macro-group of regional varieties with cumulatively more speakers than SAmE, by surveying SAsE speakers about their interactions with language technology and compare their responses to a control survey of SAmE speakers. SAsE speakers are more likely to recall failures with language technology and more likely to reference specific issues with written language technology than their SAmE counterparts. Furthermore, SAsE speakers indicate that they modify both their lexicon and syntax to make technology work better, but that lexical issues are perceived as the most salient challenge. We then assess whether these issues are pervasive in more recently developed Large Language Models (LLMs), introducing two benchmarks for broader SAsE Lexical and Indian English Syntactic understanding and evaluating 11 families of LLMs on them. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
Perceptions of Language Technology Failures from South Asian English Speakers
Popis výsledku anglicky
English NLP systems have empirically worse performance for dialects other than Standard American English (SAmE). However, how these discrepancies impact use of language technology by speakers of non-SAmE global Englishes is not well understood. We focus on reducing this gap for South Asian Englishes (SAsE), a macro-group of regional varieties with cumulatively more speakers than SAmE, by surveying SAsE speakers about their interactions with language technology and compare their responses to a control survey of SAmE speakers. SAsE speakers are more likely to recall failures with language technology and more likely to reference specific issues with written language technology than their SAmE counterparts. Furthermore, SAsE speakers indicate that they modify both their lexicon and syntax to make technology work better, but that lexical issues are perceived as the most salient challenge. We then assess whether these issues are pervasive in more recently developed Large Language Models (LLMs), introducing two benchmarks for broader SAsE Lexical and Indian English Syntactic understanding and evaluating 11 families of LLMs on them. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. Annu. Meet. Assoc. Comput Linguist.
ISBN
979-889176099-8
ISSN
0736-587X
e-ISSN
—
Počet stran výsledku
15
Strana od-do
4067-4081
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Hybrid, Bangkok
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—