Contextual factors predicting compliance behavior during the COVID-19 pandemic: A machine learning analysis on survey data from 16 countries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11410%2F22%3A10458161" target="_blank" >RIV/00216208:11410/22:10458161 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZE-oVUjyjY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZE-oVUjyjY</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0276970" target="_blank" >10.1371/journal.pone.0276970</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Contextual factors predicting compliance behavior during the COVID-19 pandemic: A machine learning analysis on survey data from 16 countries
Popis výsledku v původním jazyce
Voluntary isolation is one of the most effective methods for individuals to help prevent the transmission of diseases such as COVID-19. Understanding why people leave their homes when advised not to do so and identifying what contextual factors predict this non-compliant behavior is essential for policymakers and public health officials. To provide insight on these factors, we collected data from 42,169 individuals across 16 countries. Participants responded to items inquiring about their socio-cultural environment, such as the adherence of fellow citizens, as well as their mental states, such as their level of loneliness and boredom. We trained random forest models to predict whether someone had left their home during a one week period during which they were asked to voluntarily isolate themselves. The analyses indicated that overall, an increase in the feeling of being caged leads to an increased probability of leaving home. In addition, an increased feeling of responsibility and an increased fear of getting infected decreased the probability of leaving home. The models predicted compliance behavior with between 54% and 91% accuracy within each country's sample. In addition, we modeled factors leading to risky behavior in the pandemic context. We observed an increased probability of visiting risky places as both the anticipated number of people and the importance of the activity increased. Conversely, the probability of visiting risky places increased as the perceived putative effectiveness of social distancing decreased. The variance explained in our models predicting risk ranged from < .01 to .54 by country. Together, our findings can inform behavioral interventions to increase adherence to lockdown recommendations in pandemic conditions.
Název v anglickém jazyce
Contextual factors predicting compliance behavior during the COVID-19 pandemic: A machine learning analysis on survey data from 16 countries
Popis výsledku anglicky
Voluntary isolation is one of the most effective methods for individuals to help prevent the transmission of diseases such as COVID-19. Understanding why people leave their homes when advised not to do so and identifying what contextual factors predict this non-compliant behavior is essential for policymakers and public health officials. To provide insight on these factors, we collected data from 42,169 individuals across 16 countries. Participants responded to items inquiring about their socio-cultural environment, such as the adherence of fellow citizens, as well as their mental states, such as their level of loneliness and boredom. We trained random forest models to predict whether someone had left their home during a one week period during which they were asked to voluntarily isolate themselves. The analyses indicated that overall, an increase in the feeling of being caged leads to an increased probability of leaving home. In addition, an increased feeling of responsibility and an increased fear of getting infected decreased the probability of leaving home. The models predicted compliance behavior with between 54% and 91% accuracy within each country's sample. In addition, we modeled factors leading to risky behavior in the pandemic context. We observed an increased probability of visiting risky places as both the anticipated number of people and the importance of the activity increased. Conversely, the probability of visiting risky places increased as the perceived putative effectiveness of social distancing decreased. The variance explained in our models predicting risk ranged from < .01 to .54 by country. Together, our findings can inform behavioral interventions to increase adherence to lockdown recommendations in pandemic conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50301 - Education, general; including training, pedagogy, didactics [and education systems]
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS One
ISSN
1932-6203
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
e0276970
Kód UT WoS článku
000925006300030
EID výsledku v databázi Scopus
2-s2.0-85142940076