Effects of ignoring clustered data structures in factor analysis with applications to psychiatry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11510%2F13%3A10194857" target="_blank" >RIV/00216208:11510/13:10194857 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.lap-publishing.com/catalog/details//store/gb/book/978-3-659-41191-5/effects-of-ignoring-clustered-data-structures-in-factor-analysis" target="_blank" >https://www.lap-publishing.com/catalog/details//store/gb/book/978-3-659-41191-5/effects-of-ignoring-clustered-data-structures-in-factor-analysis</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of ignoring clustered data structures in factor analysis with applications to psychiatry
Popis výsledku v původním jazyce
In psychiatric research, data for analysis originate principally from two sources: directly from the patients themselves and from interviews conducted by health care professionals. In the latter case, statistical theory indicates that clustering by interviewers or raters needs to be considered when performing any analyses including regression, factor analysis (FA) or item response theory (IRT) modelling of binary or ordinal data. We use simulated data to study the bias of factor analytic estimates and model fit indices when data clustering is fully or partly ignored. Robustness of different estimators, such as maximum likelihood, weighted least squares and Markov chain Monte Carlo is also presented. In the second part, we analyse two real datasets containing responses to the Positive and Negative Syndrome Scale (PANSS) to show the differences when the data are analysed using the correct multilevel approach rather than a traditional aggregated analysis.
Název v anglickém jazyce
Effects of ignoring clustered data structures in factor analysis with applications to psychiatry
Popis výsledku anglicky
In psychiatric research, data for analysis originate principally from two sources: directly from the patients themselves and from interviews conducted by health care professionals. In the latter case, statistical theory indicates that clustering by interviewers or raters needs to be considered when performing any analyses including regression, factor analysis (FA) or item response theory (IRT) modelling of binary or ordinal data. We use simulated data to study the bias of factor analytic estimates and model fit indices when data clustering is fully or partly ignored. Robustness of different estimators, such as maximum likelihood, weighted least squares and Markov chain Monte Carlo is also presented. In the second part, we analyse two real datasets containing responses to the Positive and Negative Syndrome Scale (PANSS) to show the differences when the data are analysed using the correct multilevel approach rather than a traditional aggregated analysis.
Klasifikace
Druh
B - Odborná kniha
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
978-3-659-41191-5
Počet stran knihy
100
Název nakladatele
Lambert Academic Publishing
Místo vydání
Saarbrücken
Kód UT WoS knihy
—