Traditional sets versus rest-redistribution: a laboratory-controlled study of a specific cluster set configuration at fast and slow velocities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11510%2F20%3A10410604" target="_blank" >RIV/00216208:11510/20:10410604 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.h52VQgHJa" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.h52VQgHJa</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1139/apnm-2019-0584" target="_blank" >10.1139/apnm-2019-0584</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Traditional sets versus rest-redistribution: a laboratory-controlled study of a specific cluster set configuration at fast and slow velocities
Popis výsledku v původním jazyce
This study investigated redistributing long inter-set rest intervals into shorter but more frequent intervals at 2 different concentric velocities. Resistance-trained men performed 4 randomised isokinetic unilateral knee extension protocols, 2 at 60 degrees.s(-1) and 2 at 360 degrees.s(-1). At each speed, subjects performed 40 repetitions with 285 s of rest using traditional sets (TS; 4 sets of 10 with 95 s of inter-set rest) and rest-redistribution (RR; 20 sets of 2 with 15 s inter-set rest). Before and at 2, 5, and 10 min after exercise, tensiomyography (TMG) and oxygenation (near-infrared spectroscopy; NIRS) were measured. NIRS was also measured during exercise, and rating of perceived exertion (RPE) was recorded after every 10 repetitions. At both speeds, RR displayed greater peak torque, total work, and power output during latter repetitions, but there were no differences between TS or RR when averaging all 40 repetitions. The RPE was less during RR at both speeds (p < 0.05). RR increased select muscle oxygen saturation and blood flow at both speeds. There were no effects of protocol on TMG, but effect sizes favoured a quicker recovery after RR. RR was likely beneficial in maintaining performance compared with the latter parts of TS sets and limiting perceived and peripheral fatigue. Novelty Although effective at slow velocities, rest-redistribution was likely more effective during high-velocity movements in this study. Rest-redistribution maintained the ability to produce force throughout an entire range of motion. Rest-redistribution reduced RPE during both high-velocity and high-force movements.
Název v anglickém jazyce
Traditional sets versus rest-redistribution: a laboratory-controlled study of a specific cluster set configuration at fast and slow velocities
Popis výsledku anglicky
This study investigated redistributing long inter-set rest intervals into shorter but more frequent intervals at 2 different concentric velocities. Resistance-trained men performed 4 randomised isokinetic unilateral knee extension protocols, 2 at 60 degrees.s(-1) and 2 at 360 degrees.s(-1). At each speed, subjects performed 40 repetitions with 285 s of rest using traditional sets (TS; 4 sets of 10 with 95 s of inter-set rest) and rest-redistribution (RR; 20 sets of 2 with 15 s inter-set rest). Before and at 2, 5, and 10 min after exercise, tensiomyography (TMG) and oxygenation (near-infrared spectroscopy; NIRS) were measured. NIRS was also measured during exercise, and rating of perceived exertion (RPE) was recorded after every 10 repetitions. At both speeds, RR displayed greater peak torque, total work, and power output during latter repetitions, but there were no differences between TS or RR when averaging all 40 repetitions. The RPE was less during RR at both speeds (p < 0.05). RR increased select muscle oxygen saturation and blood flow at both speeds. There were no effects of protocol on TMG, but effect sizes favoured a quicker recovery after RR. RR was likely beneficial in maintaining performance compared with the latter parts of TS sets and limiting perceived and peripheral fatigue. Novelty Although effective at slow velocities, rest-redistribution was likely more effective during high-velocity movements in this study. Rest-redistribution maintained the ability to produce force throughout an entire range of motion. Rest-redistribution reduced RPE during both high-velocity and high-force movements.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30306 - Sport and fitness sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Physiology, Nutrition and Metabolism
ISSN
1715-5312
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
10
Strana od-do
421-430
Kód UT WoS článku
000522831000010
EID výsledku v databázi Scopus
2-s2.0-85082780049