Early Warning Systems in inpatient Anorexia Nervosa: A validation of the MARSIPAN-based Modified Early Warning System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11510%2F20%3A10418468" target="_blank" >RIV/00216208:11510/20:10418468 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KoBlQR_ITO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KoBlQR_ITO</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/erv.2753" target="_blank" >10.1002/erv.2753</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Early Warning Systems in inpatient Anorexia Nervosa: A validation of the MARSIPAN-based Modified Early Warning System
Popis výsledku v původním jazyce
Objective: We aimed to evaluate the validity of a MARSIPAN-guidanceadapted Early Warning System (MARSI MEWS) and compare it to the National Early Warning Score (NEWS) and an adapted version of the Physical Risk in Eating Disorders Index (PREDIX), to ascertain whether current practice is comparable to best-practice standards. Methods: We collated 3,937 observations from 36 inpatients from Addenbrookes Hospital over 2017-2018 and used three independent raters to create a "gold standard" of deteriorating cases. We ascertained performance metrics (Receiver Operating Characteristic Area Under the curve) for MARSI MEWS, NEWS and PREDIX; we also tested the proof of concept of a machinelearning-based early-warning-system (ML-EWS) using cross-validation and out-of-sample prediction of cases. Results: The MARSI MEWS system showed higher ROC AUC (0.916) compared to NEWS (0.828) or PREDIX (0.865). ML-EWS (random forest) performed well at independent samples analysis (0.980) and multilevel analysis (0.922). Conclusion: MARSI MEWS seems most suitable for identifying critically deteriorating cases in anorexia nervosa inpatient population. We did not examine community practice in which the PREDIX arguably remains the best to ascertain deteriorating cases. Our results also provide a first proof of concept for the development of artificial-intelligence-based early warning systems in anorexia nervosa. Implications for inpatient clinical practice in eating disorders are discussed.
Název v anglickém jazyce
Early Warning Systems in inpatient Anorexia Nervosa: A validation of the MARSIPAN-based Modified Early Warning System
Popis výsledku anglicky
Objective: We aimed to evaluate the validity of a MARSIPAN-guidanceadapted Early Warning System (MARSI MEWS) and compare it to the National Early Warning Score (NEWS) and an adapted version of the Physical Risk in Eating Disorders Index (PREDIX), to ascertain whether current practice is comparable to best-practice standards. Methods: We collated 3,937 observations from 36 inpatients from Addenbrookes Hospital over 2017-2018 and used three independent raters to create a "gold standard" of deteriorating cases. We ascertained performance metrics (Receiver Operating Characteristic Area Under the curve) for MARSI MEWS, NEWS and PREDIX; we also tested the proof of concept of a machinelearning-based early-warning-system (ML-EWS) using cross-validation and out-of-sample prediction of cases. Results: The MARSI MEWS system showed higher ROC AUC (0.916) compared to NEWS (0.828) or PREDIX (0.865). ML-EWS (random forest) performed well at independent samples analysis (0.980) and multilevel analysis (0.922). Conclusion: MARSI MEWS seems most suitable for identifying critically deteriorating cases in anorexia nervosa inpatient population. We did not examine community practice in which the PREDIX arguably remains the best to ascertain deteriorating cases. Our results also provide a first proof of concept for the development of artificial-intelligence-based early warning systems in anorexia nervosa. Implications for inpatient clinical practice in eating disorders are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30306 - Sport and fitness sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Eating Disorders Review
ISSN
1072-4133
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
551-558
Kód UT WoS článku
000540259300001
EID výsledku v databázi Scopus
2-s2.0-85086433185