Leading indicators of crisis incidence: evidence from developed countries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11640%2F12%3A00387963" target="_blank" >RIV/00216208:11640/12:00387963 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1486.pdf" target="_blank" >http://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1486.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Leading indicators of crisis incidence: evidence from developed countries
Popis výsledku v původním jazyce
We search for early warning indicators that could indicate important risks in developed economies. We therefore examine which indicators are most useful in explaining costly macroeconomic developments following the occurrence of economic crises in EU andOECD countries between 1970 and 2010. To define our dependent variable, we bring together a (continuous) measure of crisis incidence, which combines the output and employment loss and the fiscal deficit into an index of real costs, with a (discrete) database of crisis occurrence. In contrast to recent studies, we explicitly take into account model uncertainty in two steps. First, for each potential leading indicator, we select the relevant prediction horizon by using panel vector autoregression. Second, we identify the most useful leading indicators with Bayesian model averaging. Our results suggest that domestic housing prices, share prices, and credit growth, and some global variables, such as private credit, are risk factors worth m
Název v anglickém jazyce
Leading indicators of crisis incidence: evidence from developed countries
Popis výsledku anglicky
We search for early warning indicators that could indicate important risks in developed economies. We therefore examine which indicators are most useful in explaining costly macroeconomic developments following the occurrence of economic crises in EU andOECD countries between 1970 and 2010. To define our dependent variable, we bring together a (continuous) measure of crisis incidence, which combines the output and employment loss and the fiscal deficit into an index of real costs, with a (discrete) database of crisis occurrence. In contrast to recent studies, we explicitly take into account model uncertainty in two steps. First, for each potential leading indicator, we select the relevant prediction horizon by using panel vector autoregression. Second, we identify the most useful leading indicators with Bayesian model averaging. Our results suggest that domestic housing prices, share prices, and credit growth, and some global variables, such as private credit, are risk factors worth m
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů