Creating improved survey data products using linked administrative-survey data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11640%2F19%3A00509294" target="_blank" >RIV/00216208:11640/19:00509294 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1093/jssam/smy017" target="_blank" >http://dx.doi.org/10.1093/jssam/smy017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/jssam/smy017" target="_blank" >10.1093/jssam/smy017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Creating improved survey data products using linked administrative-survey data
Popis výsledku v původním jazyce
Recent research linking administrative to survey data has laid the groundwork for improvements in survey data products. However, the opportunities have not been fully realized yet. In this article, our main objective is to use administrative-survey linked microdata to demonstrate the potential of data linkage to reduce survey error through model-based blended imputation methods. We use parametric models based on the linked data to create imputed values of Medicaid enrollment and food stamp (SNAP) receipt. This approach to blending data from surveys and administrative data through models is less likely to compromise confidentiality or violate the terms of the data sharing agreements among the agencies than releasing the linked microdata, and we demonstrate that it can yield substantial improvements of estimate accuracy. Using the blended imputation approach reduces root mean squared error (RMSE) of estimates by 81 percent for state-level Medicaid enrollment and by 93 percent for substate area SNAP receipt compared with estimates based on the survey data alone. Given the high level of measurement error associated with these important programs in the United States, data producers should consider blended imputation methods like the ones we describe in this article to create improved estimates for policy research.
Název v anglickém jazyce
Creating improved survey data products using linked administrative-survey data
Popis výsledku anglicky
Recent research linking administrative to survey data has laid the groundwork for improvements in survey data products. However, the opportunities have not been fully realized yet. In this article, our main objective is to use administrative-survey linked microdata to demonstrate the potential of data linkage to reduce survey error through model-based blended imputation methods. We use parametric models based on the linked data to create imputed values of Medicaid enrollment and food stamp (SNAP) receipt. This approach to blending data from surveys and administrative data through models is less likely to compromise confidentiality or violate the terms of the data sharing agreements among the agencies than releasing the linked microdata, and we demonstrate that it can yield substantial improvements of estimate accuracy. Using the blended imputation approach reduces root mean squared error (RMSE) of estimates by 81 percent for state-level Medicaid enrollment and by 93 percent for substate area SNAP receipt compared with estimates based on the survey data alone. Given the high level of measurement error associated with these important programs in the United States, data producers should consider blended imputation methods like the ones we describe in this article to create improved estimates for policy research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ16-07603Y" target="_blank" >GJ16-07603Y: Příčiny a důsledky nesprávného vykazování ve výběrových šetřeních: Evidence z propojených administrativních dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Survey Statistics and Methodology
ISSN
2325-0984
e-ISSN
2325-0992
Svazek periodika
7
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
440-463
Kód UT WoS článku
000493303500006
EID výsledku v databázi Scopus
—