Analysis of diffusion tensor measurements of the human cervical spinal cord based on semiautomatic segmentation of the white and gray matter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F18%3A00106924" target="_blank" >RIV/00216224:14110/18:00106924 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/65269705:_____/18:00068912
Výsledek na webu
<a href="http://dx.doi.org/10.1002/jmri.26166" target="_blank" >http://dx.doi.org/10.1002/jmri.26166</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jmri.26166" target="_blank" >10.1002/jmri.26166</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of diffusion tensor measurements of the human cervical spinal cord based on semiautomatic segmentation of the white and gray matter
Popis výsledku v původním jazyce
BackgroundPurposeSegmentation of the gray and white matter (GM, WM) of the human spinal cord in MRI images as well as the analysis of spinal cord diffusivity are challenging. When appropriately segmented, diffusion tensor imaging (DTI) of the spinal cord might be beneficial in the diagnosis and prognosis of several diseases. To evaluate the applicability of a semiautomatic algorithm provided by ITK-SNAP in classification mode (CLASS) for segmenting cervical spinal cord GM, WM in MRI images and analyzing DTI parameters. Study TypeSubjectsProspective. Twenty healthy volunteers. SequencesAssessment1.5T, turbo spin echo, fast field echo, single-shot echo planar imaging. Three raters segmented the tissues by manual, CLASS, and atlas-based methods (Spinal Cord Toolbox, SCT) on T-2-weighted and DTI images. Masks were quantified by similarity and distance metrics, then analyzed for repeatability and mutual comparability. Masks created over T-2 images were registered into diffusion space and fractional anisotropy (FA) values were statistically evaluated for dependency on method, rater, or tissue. Statistical TestsResultst-test, analysis of variance (ANOVA), coefficient of variation, Dice coefficient, Hausdorff distance. CLASS segmentation reached better agreement with manual segmentation than did SCT (P<0.001). Intra- and interobserver repeatability of SCT was better for GM and WM (both P<0.001) but comparable with CLASS in entire spinal cord segmentation (P=0.17 and P=0.07, respectively). While FA values of whole spinal cord were not influenced by choice of segmentation method, both semiautomatic methods yielded lower FA values (P<0.005) for GM than did the manual technique (mean differences 0.02 and 0.04 for SCT and CLASS, respectively). Repeatability of FA values for all methods was sufficient, with mostly less than 2% variance.
Název v anglickém jazyce
Analysis of diffusion tensor measurements of the human cervical spinal cord based on semiautomatic segmentation of the white and gray matter
Popis výsledku anglicky
BackgroundPurposeSegmentation of the gray and white matter (GM, WM) of the human spinal cord in MRI images as well as the analysis of spinal cord diffusivity are challenging. When appropriately segmented, diffusion tensor imaging (DTI) of the spinal cord might be beneficial in the diagnosis and prognosis of several diseases. To evaluate the applicability of a semiautomatic algorithm provided by ITK-SNAP in classification mode (CLASS) for segmenting cervical spinal cord GM, WM in MRI images and analyzing DTI parameters. Study TypeSubjectsProspective. Twenty healthy volunteers. SequencesAssessment1.5T, turbo spin echo, fast field echo, single-shot echo planar imaging. Three raters segmented the tissues by manual, CLASS, and atlas-based methods (Spinal Cord Toolbox, SCT) on T-2-weighted and DTI images. Masks were quantified by similarity and distance metrics, then analyzed for repeatability and mutual comparability. Masks created over T-2 images were registered into diffusion space and fractional anisotropy (FA) values were statistically evaluated for dependency on method, rater, or tissue. Statistical TestsResultst-test, analysis of variance (ANOVA), coefficient of variation, Dice coefficient, Hausdorff distance. CLASS segmentation reached better agreement with manual segmentation than did SCT (P<0.001). Intra- and interobserver repeatability of SCT was better for GM and WM (both P<0.001) but comparable with CLASS in entire spinal cord segmentation (P=0.17 and P=0.07, respectively). While FA values of whole spinal cord were not influenced by choice of segmentation method, both semiautomatic methods yielded lower FA values (P<0.005) for GM than did the manual technique (mean differences 0.02 and 0.04 for SCT and CLASS, respectively). Repeatability of FA values for all methods was sufficient, with mostly less than 2% variance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30224 - Radiology, nuclear medicine and medical imaging
Návaznosti výsledku
Projekt
<a href="/cs/project/NV15-32133A" target="_blank" >NV15-32133A: Predikce konverze klinicky izolovaného syndromu do roztroušené sklerózy pomocí pokročilých technik zobrazení magnetickou rezonancí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Magnetic Resonance Imaging
ISSN
1053-1807
e-ISSN
1522-2586
Svazek periodika
48
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
1217-1227
Kód UT WoS článku
000448081300006
EID výsledku v databázi Scopus
2-s2.0-85055211023