Structural and functional MRI correlates of T2 hyperintensities of brain white matter in young neurologically asymptomatic adults
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F19%3A00108573" target="_blank" >RIV/00216224:14110/19:00108573 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/65269705:_____/19:00071470
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00330-019-06268-8" target="_blank" >http://dx.doi.org/10.1007/s00330-019-06268-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00330-019-06268-8" target="_blank" >10.1007/s00330-019-06268-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structural and functional MRI correlates of T2 hyperintensities of brain white matter in young neurologically asymptomatic adults
Popis výsledku v původním jazyce
Objectives Although white matter hyperintensities (WMHs) are quite commonly found incidentally, their aetiology, structural characteristics, and functional consequences are not entirely known. The purpose of this study was to quantify WMHs in a sample of young, neurologically asymptomatic adults and evaluate the structural and functional correlations of lesion load with changes in brain volume, diffusivity, and functional connectivity. Methods MRI brain scan using multimodal protocol was performed in 60 neurologically asymptomatic volunteers (21 men, 39 women, mean age 34.5 years). WMHs were manually segmented in 3D FLAIR images and counted automatically. The number and volume of WMHs were correlated with brain volume, resting-state functional MRI (rs-fMRI), and diffusion tensor imaging (DTI) data. Diffusion parameters measured within WMHs and normally appearing white matter (NAWM) were compared. Results At least 1 lesion was found in 40 (67%) subjects, median incidence was 1 lesion (interquartile range [IQR]=4.5), and median volume was 86.82 (IQR=227.23) mm(3). Neither number nor volume of WMHs correlated significantly with total brain volume or volumes of white and grey matter. Mean diffusivity values within WMHs were significantly higher compared with those for NAWM, but none of the diffusion parameters of NAWM were significantly correlated with WMH load. Both the number and volume of WMHs were correlated with the changes of functional connectivity between several regions of the brain, mostly decreased connectivity of the cerebellum. Conclusions WMHs are commonly found even in young, neurologically asymptomatic adults. Their presence is not associated with brain atrophy or global changes of diffusivity, but the increasing number and volume of these lesions correlate with changes of brain connectivity, and especially that of the cerebellum.
Název v anglickém jazyce
Structural and functional MRI correlates of T2 hyperintensities of brain white matter in young neurologically asymptomatic adults
Popis výsledku anglicky
Objectives Although white matter hyperintensities (WMHs) are quite commonly found incidentally, their aetiology, structural characteristics, and functional consequences are not entirely known. The purpose of this study was to quantify WMHs in a sample of young, neurologically asymptomatic adults and evaluate the structural and functional correlations of lesion load with changes in brain volume, diffusivity, and functional connectivity. Methods MRI brain scan using multimodal protocol was performed in 60 neurologically asymptomatic volunteers (21 men, 39 women, mean age 34.5 years). WMHs were manually segmented in 3D FLAIR images and counted automatically. The number and volume of WMHs were correlated with brain volume, resting-state functional MRI (rs-fMRI), and diffusion tensor imaging (DTI) data. Diffusion parameters measured within WMHs and normally appearing white matter (NAWM) were compared. Results At least 1 lesion was found in 40 (67%) subjects, median incidence was 1 lesion (interquartile range [IQR]=4.5), and median volume was 86.82 (IQR=227.23) mm(3). Neither number nor volume of WMHs correlated significantly with total brain volume or volumes of white and grey matter. Mean diffusivity values within WMHs were significantly higher compared with those for NAWM, but none of the diffusion parameters of NAWM were significantly correlated with WMH load. Both the number and volume of WMHs were correlated with the changes of functional connectivity between several regions of the brain, mostly decreased connectivity of the cerebellum. Conclusions WMHs are commonly found even in young, neurologically asymptomatic adults. Their presence is not associated with brain atrophy or global changes of diffusivity, but the increasing number and volume of these lesions correlate with changes of brain connectivity, and especially that of the cerebellum.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30224 - Radiology, nuclear medicine and medical imaging
Návaznosti výsledku
Projekt
<a href="/cs/project/NV15-32133A" target="_blank" >NV15-32133A: Predikce konverze klinicky izolovaného syndromu do roztroušené sklerózy pomocí pokročilých technik zobrazení magnetickou rezonancí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Radiology
ISSN
0938-7994
e-ISSN
1432-1084
Svazek periodika
29
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
7027-7036
Kód UT WoS článku
000500979400066
EID výsledku v databázi Scopus
2-s2.0-85071324533