Identification of Laminar Composition in Cerebral Cortex Using Low-Resolution Magnetic Resonance Images and Trust Region Optimization Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F22%3A00125139" target="_blank" >RIV/00216224:14110/22:00125139 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2075-4418/12/1/24" target="_blank" >https://www.mdpi.com/2075-4418/12/1/24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/diagnostics12010024" target="_blank" >10.3390/diagnostics12010024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identification of Laminar Composition in Cerebral Cortex Using Low-Resolution Magnetic Resonance Images and Trust Region Optimization Algorithm
Popis výsledku v původním jazyce
Pathological changes in the cortical lamina can cause several mental disorders. Visualization of these changes in vivo would enhance their diagnostics. Recently a framework for visualizing cortical structures by magnetic resonance imaging (MRI) has emerged. This is based on mathematical modeling of multi-component T1 relaxation at the sub-voxel level. This work proposes a new approach for their estimation. The approach is validated using simulated data. Sixteen MRI experiments were carried out on healthy volunteers. A modified echo-planar imaging (EPI) sequence was used to acquire 105 individual volumes. Data simulating the images were created, serving as the ground truth. The model was fitted to the data using a modified Trust Region algorithm. In single voxel experiments, the estimation accuracy of the T1 relaxation times depended on the number of optimization starting points and the level of noise. A single starting point resulted in a mean percentage error (MPE) of 6.1%, while 100 starting points resulted in a perfect fit. The MPE was <5% for the signal-to-noise ratio (SNR) ≥ 38 dB. Concerning multiple voxel experiments, the MPE was <5% for all components. Estimation of T1 relaxation times can be achieved using the modified algorithm with MPE < 5%.
Název v anglickém jazyce
Identification of Laminar Composition in Cerebral Cortex Using Low-Resolution Magnetic Resonance Images and Trust Region Optimization Algorithm
Popis výsledku anglicky
Pathological changes in the cortical lamina can cause several mental disorders. Visualization of these changes in vivo would enhance their diagnostics. Recently a framework for visualizing cortical structures by magnetic resonance imaging (MRI) has emerged. This is based on mathematical modeling of multi-component T1 relaxation at the sub-voxel level. This work proposes a new approach for their estimation. The approach is validated using simulated data. Sixteen MRI experiments were carried out on healthy volunteers. A modified echo-planar imaging (EPI) sequence was used to acquire 105 individual volumes. Data simulating the images were created, serving as the ground truth. The model was fitted to the data using a modified Trust Region algorithm. In single voxel experiments, the estimation accuracy of the T1 relaxation times depended on the number of optimization starting points and the level of noise. A single starting point resulted in a mean percentage error (MPE) of 6.1%, while 100 starting points resulted in a perfect fit. The MPE was <5% for the signal-to-noise ratio (SNR) ≥ 38 dB. Concerning multiple voxel experiments, the MPE was <5% for all components. Estimation of T1 relaxation times can be achieved using the modified algorithm with MPE < 5%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Diagnostics
ISSN
2075-4418
e-ISSN
2075-4418
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000757263000001
EID výsledku v databázi Scopus
2-s2.0-85121692716