Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Against Continuous and Topological Versions of Sorites Paradoxes (SOPhiA 2014, 4. 9. 2014, Salzburg)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F14%3A00076349" target="_blank" >RIV/00216224:14210/14:00076349 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Against Continuous and Topological Versions of Sorites Paradoxes (SOPhiA 2014, 4. 9. 2014, Salzburg)

  • Popis výsledku v původním jazyce

    All sorites paradoxes formulated up to present time are formulated in a discrete environment -- i.e., these paradoxes are based on either adding or removing small, yet discrete elements like grains, hairs or millimetres. Mark Colyvan and Zach Weber in their 2010 article ''A Topological Sorites'' propose a few versions of the sorites paradox which are formulated in a cohesive environment. They consider their version, so called topological sorites, to be the most general version of the sorites paradox. Inmy critical reaction to their paper I will defend two standpoints. First I will provide arguments in favour of a claim that the most general version of the sorites paradox cannot be the topological version, which is loosely based on a mathematical induction, but it is in fact the conditional version. Secondly I will show that while Colyvan and Weber tried to present new versions of the sorites paradox, paradoxes proposed by them cannot be counted as sorites paradoxes.

  • Název v anglickém jazyce

    Against Continuous and Topological Versions of Sorites Paradoxes (SOPhiA 2014, 4. 9. 2014, Salzburg)

  • Popis výsledku anglicky

    All sorites paradoxes formulated up to present time are formulated in a discrete environment -- i.e., these paradoxes are based on either adding or removing small, yet discrete elements like grains, hairs or millimetres. Mark Colyvan and Zach Weber in their 2010 article ''A Topological Sorites'' propose a few versions of the sorites paradox which are formulated in a cohesive environment. They consider their version, so called topological sorites, to be the most general version of the sorites paradox. Inmy critical reaction to their paper I will defend two standpoints. First I will provide arguments in favour of a claim that the most general version of the sorites paradox cannot be the topological version, which is loosely based on a mathematical induction, but it is in fact the conditional version. Secondly I will show that while Colyvan and Weber tried to present new versions of the sorites paradox, paradoxes proposed by them cannot be counted as sorites paradoxes.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    AA - Filosofie a náboženství

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů