Type-Theoretical Approaches to Problems and Solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F15%3A00083750" target="_blank" >RIV/00216224:14210/15:00083750 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Type-Theoretical Approaches to Problems and Solutions
Popis výsledku v původním jazyce
We examine two possible approaches to the formal treatment of the notion of problem in the type-theoretical paradigm. More specifically, we will explore an approach put forward by Martin-Löf's Constructive Type Theory (abbr. CTT, based on BHK interpretation of intuitionistic logic and Curry-Howard-de Bruijn correspondence), which can be seen as a direct continuation of Kolmogorov's original calculus of problems, and an approach put forward by Materna utilizing Tichý's Transparent Intensional Logic (abbr. TIL, based on partial lambda calculus and ramified classical type theory), which can be viewed as a realist attempt of interpreting Kolmogorov's logic of problems. Thus both of these theories can be seen as building upon Kolmogorov's first key insightthat (constructive) logic is better understood as dealing with problems rather than with propositions. We conclude that neither of these theories can be considered at their current state as providing satisfactory account of the notion of
Název v anglickém jazyce
Type-Theoretical Approaches to Problems and Solutions
Popis výsledku anglicky
We examine two possible approaches to the formal treatment of the notion of problem in the type-theoretical paradigm. More specifically, we will explore an approach put forward by Martin-Löf's Constructive Type Theory (abbr. CTT, based on BHK interpretation of intuitionistic logic and Curry-Howard-de Bruijn correspondence), which can be seen as a direct continuation of Kolmogorov's original calculus of problems, and an approach put forward by Materna utilizing Tichý's Transparent Intensional Logic (abbr. TIL, based on partial lambda calculus and ramified classical type theory), which can be viewed as a realist attempt of interpreting Kolmogorov's logic of problems. Thus both of these theories can be seen as building upon Kolmogorov's first key insightthat (constructive) logic is better understood as dealing with problems rather than with propositions. We conclude that neither of these theories can be considered at their current state as providing satisfactory account of the notion of
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
AA - Filosofie a náboženství
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů