How (not) to derive a *ABA: the case of Blansitt's generalisation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F17%3A00094806" target="_blank" >RIV/00216224:14210/17:00094806 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.glossa-journal.org/articles/abstract/10.5334/gjgl.348/" target="_blank" >https://www.glossa-journal.org/articles/abstract/10.5334/gjgl.348/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5334/gjgl.348" target="_blank" >10.5334/gjgl.348</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How (not) to derive a *ABA: the case of Blansitt's generalisation
Popis výsledku v původním jazyce
In this paper, I provide an account for the so-called Blansitt›s generalisation (Blansitt 1988). The generalisation says that in the linear sequence dative—allative—locative, only adjacent functions may be marked the same. In previous work (Bobaljik 2012; Starke 2009; Caha 2009), analogous *ABA patterns have been encoded by the so-called feature cumulation. Feature cumulation means that the amount of features characteristic for individual categories monotonically grows in the order given in any such sequence. However, Blansitt observes that in the case of datives, allatives and locatives, the allative (which is in the middle) tends to be composed of the dative and the locative, so the account based on cumulation does not work. The present paper thus argues for a different representation of the underlying categories, namely as containing (abstractly) the features a, ab and b respectively (following in part Bobaljik & Sauerland 2017). I refer to this as the “overlapping” decomposition. When such a decomposition is combined with the Superset Principle (Starke 2009), it yields both the *ABA restriction and the observed syncretism and containment patterns.
Název v anglickém jazyce
How (not) to derive a *ABA: the case of Blansitt's generalisation
Popis výsledku anglicky
In this paper, I provide an account for the so-called Blansitt›s generalisation (Blansitt 1988). The generalisation says that in the linear sequence dative—allative—locative, only adjacent functions may be marked the same. In previous work (Bobaljik 2012; Starke 2009; Caha 2009), analogous *ABA patterns have been encoded by the so-called feature cumulation. Feature cumulation means that the amount of features characteristic for individual categories monotonically grows in the order given in any such sequence. However, Blansitt observes that in the case of datives, allatives and locatives, the allative (which is in the middle) tends to be composed of the dative and the locative, so the account based on cumulation does not work. The present paper thus argues for a different representation of the underlying categories, namely as containing (abstractly) the features a, ab and b respectively (following in part Bobaljik & Sauerland 2017). I refer to this as the “overlapping” decomposition. When such a decomposition is combined with the Superset Principle (Starke 2009), it yields both the *ABA restriction and the observed syncretism and containment patterns.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
60203 - Linguistics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-10144S" target="_blank" >GA17-10144S: Lineární kontiguita v jazyce</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Glossa : a journal of general linguistics
ISSN
2397-1835
e-ISSN
—
Svazek periodika
2
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
32
Strana od-do
84
Kód UT WoS článku
000415685600002
EID výsledku v databázi Scopus
—