Fractional Order Derivatives Evaluation in Computerized Assessment of Handwriting Difficulties in School-aged Children
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F19%3A00107994" target="_blank" >RIV/00216224:14210/19:00107994 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICUMT48472.2019.8970811" target="_blank" >http://dx.doi.org/10.1109/ICUMT48472.2019.8970811</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICUMT48472.2019.8970811" target="_blank" >10.1109/ICUMT48472.2019.8970811</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fractional Order Derivatives Evaluation in Computerized Assessment of Handwriting Difficulties in School-aged Children
Popis výsledku v původním jazyce
Handwriting difficulties (HD) affects some of the school-aged children and its current prevalence rate is between 5-34%. Children at primary schools have to face rising cognitive demands that the handwriting represents, and some of them are not able to do so. As a result, they tend to make mistakes and their written product is dysfluent and has poor legibility. HD can also lead them to lower self-esteem, learning difficulties and ultimately to less academic achievements. For this reason occupational therapists are trying to identify HD through examination as early as possible. We extracted online handwriting signals of children using digitizing tablets. Handwriting Proficiency Screening Questionnaire for Children (HPSQ-C) was used to score severity of HD in children's written product. To advance current computerized analysis of online handwriting, we employed fractional order derivatives features (FD) together with conventional features. We selected the significant features for HD identification and utilize correlation analysis together with Mann-Whitney U-test to evaluate their discrimination power. We can conclude that FD-based features bring benefits of more robust quantification of in-air movements as opposed to the conventionally used ones. Finally, we have shown that utilization of FD can be beneficial for computerized assessment of HD but should be further optimized and evaluated with advanced statistical or machine learning methods.
Název v anglickém jazyce
Fractional Order Derivatives Evaluation in Computerized Assessment of Handwriting Difficulties in School-aged Children
Popis výsledku anglicky
Handwriting difficulties (HD) affects some of the school-aged children and its current prevalence rate is between 5-34%. Children at primary schools have to face rising cognitive demands that the handwriting represents, and some of them are not able to do so. As a result, they tend to make mistakes and their written product is dysfluent and has poor legibility. HD can also lead them to lower self-esteem, learning difficulties and ultimately to less academic achievements. For this reason occupational therapists are trying to identify HD through examination as early as possible. We extracted online handwriting signals of children using digitizing tablets. Handwriting Proficiency Screening Questionnaire for Children (HPSQ-C) was used to score severity of HD in children's written product. To advance current computerized analysis of online handwriting, we employed fractional order derivatives features (FD) together with conventional features. We selected the significant features for HD identification and utilize correlation analysis together with Mann-Whitney U-test to evaluate their discrimination power. We can conclude that FD-based features bring benefits of more robust quantification of in-air movements as opposed to the conventionally used ones. Finally, we have shown that utilization of FD can be beneficial for computerized assessment of HD but should be further optimized and evaluated with advanced statistical or machine learning methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50102 - Psychology, special (including therapy for learning, speech, hearing, visual and other physical and mental disabilities);
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-16835S" target="_blank" >GA18-16835S: Výzkum pokročilých metod diagnózy a hodnocení vývojové dysgrafie založených na kvantitativní analýze online písma a kresby</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
9781728157634
ISSN
2157-0221
e-ISSN
2157-023X
Počet stran výsledku
6
Strana od-do
210-215
Název nakladatele
IEEE
Místo vydání
Dublin
Místo konání akce
Dublin
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000540651700027